NAVAL POSTGRADUATE SCHOOL
Monterey, California

@ﬁg QUALITY TSI EOTED 8

THESIS

A STUDY OF VIDEO TELECONFERENCING TRAFFIC
ON A TCP/IP NETWORK

by
Harlan A. Carvey

March 1997

Thesis Advisor Murali Tummala

Approved for public release; distribution is unlimited.

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC
20503.

1. AGENCY USEONLY (Leave blank) |2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
March 1997 Master’s Thesis

4. TITLE AND SUBTITLE TITLE OF THESIS A Study of Video 5. FUNDING NUMBERS
Teleconferencing Traffic on a TCP/IP Network

6. AUTHOR(S) Harlan A. Carvey

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING
Naval Postgraduate School gggﬁ%ﬁ%ﬁ "
Monterey CA 93943-5000

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect
the official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public 12b. DISTRIBUTION CODE
release; distribution unlimited

13. ABSTRACT (maximum 200 words)

In this thesis the nature of variable bit rate (VBR) traffic, as generated by a video teleconferencing
application, in an Ethernet environment is studied. Analysis of the data retrieved from a testbed using
metrics such as the rescaled adjusted range statistic, variance-time curve, and index of dispersion for
counts illustrate the self-similar nature of traffic generated by a video teleconferencing application.
This information is useful in formulating accurate models to support the various classes of traffic that
will dominate the broadband ISDN (B-ISDN or ATM) infrastructure and in developing adequate
access control mechanisms for those classes of traffic. The future of wide-area networking will see
Ethernet LANSs populating the access points of ATM WANS, thus making use of the ATM transport
mechanism for wide-area communications. This thesis reports on work pertaining only to the traffic
offered by the Ethernet LAN.

Java and the Simple Network Management Protocol (SNMP) provide the means with which to
construct tools for gathering and simulating VTC traffic. Java applets were written to measure and
simulate VTC traffic.

14. SUBJECTTERMS Video Teleconferencing, variable bit rate, VBR, SNMP, 15. NUMBER OF
Java PAGES 86
16. PRICE CODE
17. SECURITY CLASSIFICA- | 18. SECURITY CLASSIFI- 19. SECURITY CLASSIFICA- | 20. LIMITATION OF
TION OF REPORT CATION OF THIS PAGE TION OF ABSTRACT ABSTRACT
Unclassified Unclassified Unclassified UL

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18 298-102

«

it

Approved for public release; distribution is unlimited

A STUDY OF VIDEO TELECONFERENCING TRAFFIC ON
A TCP/IP NETWORK

Harlan A. Carvey
Captain, United States Marine Corps
B.S., Virginia Military Institute, 1989

Submitted in partial fulfillment of the
requirements for the degree of
MASTER OF SCIENCE IN ELECTRICAL ENGINEERING
from the

NAVAL POSTGRADUATE SCHOOL

March 1997

Author: /\/
9

Harlan A. C

Murali Tummala, Thesi dv1sor

Herschel H. Loomis, Jr., C%i;man,
Department of Electrical and Computer Engineering

1ii

ABSTRACT

In this thesis the nature of variable bit rate (VBR) traffic, as generated by a video
teleconferencing (VTC) application, in an Ethernet environment is studied. Graphical
analysis of the data retrieved from a testbed using metrics such as the rescaled adjusted
range statistic, variance-time curve, and index of dispersion for counts illustrates the self-
similar nature of traffic generated by a video teleconferencing application. Additionally,
similar analysis is conducted using simulated traffic generated via statistical models. This
information is useful in formulating accurate models to support the various classes of
traffic that will dominate the broadband ISDN (B-ISDN or ATM) infrastructure and in
developing adequate access control mechanisms for those classes of traffic. The future of
wide-area networking will see Ethernet LANs populating the access points of ATM
WANSs, thus making use of the ATM transport mechanism for wide-area
communications. This thesis reports on work pertaining only to the traffic offered by the
Ethernet LAN.

Java and the Simple Network Management Protocol (SNMP) provide the means
with which to construct tools for gathering and simulating VTC traffic. Java applets were
written to measure and simulate VTC traffic.

vi

TABLE OF CONTENTS

[. INTRODUGTION ...oooiiotiiiiieieeciieeeeeeeeete e eeeeeaae s s e eeretateeseeeesattesaeeesnsssssesesessennees 1
[I. VIDEO TELECONFERENCINGcccuttttiieeiecceeeeeeeceeerneereeeeetrreeeeeeeessnnnneeeeessenens 3
A. VIDEO TELECONFERENCING SYSTEM ..coooiriiiiiiiiieeeeeeeeeeeeeeeeeeee e 3

B. VIDEO TELECONFERENCING.......cuuttirrttitireeeeeeeeeeeeeeeeceeeesnennnesesssssrennreeseesseas 3

C. STANDARDS AND COMMERCIAL SYSTEMS ...t 7
III. TESTBED NETWORKoottiiiiiiiieiieieeeeeeeeeetee e eeeevasatteeeessneeeeeeeesssssssassesennnnens 9
A. TESTBED ENVIRONMENToootiiiiiiiieeeeeeeee e eerenaee e e eeessnaeseeeens 9

B. VIDEO TELECONFERENCING SOFTWAREccooviittreeeieeeeee e 11

C. VIDEO/AUDIO CAPTURE CARDoovtiieeieeeeeeeeeeeeeeeeeeeeeeevveevveneereeee e 11

D. SIMPLE NETWORK MANAGEMENT PROTOCOL........uoooveeieeeeeeeeereneeennn. 12

B JAV A ettt sttt e ettt e e e e e e e ae e s et e et aaaarrrbanaraaaeaaees 13
IV.TRAFFIC MODELING........cooiiiittieieeetieeeee e eeeeeveeeeeeeeennvsseeeeesssseseseeesssnsssesesennes 17
A. SELF-SIMILAR NATURE OF TRAFFIC.......ouiiiieeeireeeeeireeeeeceernnteeeeenns 17

B. MINISOURCE.......ooi ittt eeetteveeee e et ee e e eseeabaeeeeesessnnasseeeesnnsssaaesanes 19

C. SIMULATION ...ttt ee et e et e e e e e eeesae s eenreeeenanseeennneseeenes .21

V. RESULTS oottt e ettt e e e e e eeeasasaeaeeeeessssasseeeenssasseeeeesssssnnsssensnsees 25
A. DATA COLLECTION ..ottt eeeteee e ee e teeesee s seseeesseensnnsaeaeann 25

B R E SUL TS e ettt e e e eet e s s e s sssaaaassensastnssesennnraneneess 26

1. R/S STAISTIC . iieeeieeee ettt e e e e e eeeeeeeeeeeeeesnssnnsnsrasnsnnsreaaaaens 29

2. VarianCe-Time CUIVEccvveereeieeeiiieeeeeereirrreanrenrrererenreeeeeneeenns e 31

3. Index of Dispersion for Counts (IDC).....ccoccueeiiriiiiiriiiiiieeriteeereeeeeeeeeeeeeeae 33

C. RESULTS FOR VIDEO/AUDIO TRAFFIC ...ccooiiiiiiiieieeeeeeeieeeeeeeeeeeeeeeeeeeeee e 35
V1. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK................ 43
AL CONCLUSIONS . ..ottt e e ctereae e e e e e s svaveeeeseseenssssaesessssnseaeeaeeansssseaeasnns 43

B. RECOMMENDATIONS FOR FUTURE WORKccoooiiiiiiiiiiieiieeeeeeeeeeeeeeeee 44
APPENDIX A: JAVA-SNMP APPLET SOURCE CODE..........ooviieeieeeeeeeeecnreeeennns 45
A. MIBCRUSHER.JAVA . oottt e e ver e ana e e eaeeens 45

B. POLLTHREAD.JAVA ...ttt et seesneaeaae e eenssaaaaneeen 49
C.SNMPGET.JAVA et et e e et e eeeesanneeesessesssnneeeeennns 52

D. MIBCRUSHER.HTML......oooiitiiiiiieeeeeeeeeeeneeeeeeesanereeesenaaeesesesnnnnnsesenanes 54
APPENDIX B: JAVA SIMULATION APPLET SOURCE CODE.....ccococceeeveevnrnreeenn. 55
AL SIMTEST.JAVA . ..o eee e e e e e nnr e essanseeeesssssnasnaeaeeenns 55

B. SIMTESTZJAVA ...ttt e e et e ee e e e e e e eee s anserasaanaasreaeeeeeens 62
APPENDIX C: MATLAB SOURCE CODE......ooviieieeeee e 71
AL TRAFFIC. M .. ettt e e e e e e e s e e stneee s e nsssneeesesssnnnnneeessens 71

B R S M ettt ee et e e e e arn et e e e ettt nne e e e e nnrarteeeenes 72

C.o VAR ettt es et e e e e e s ss s ssnaeaae s aneseaereeeseenns 75

DL IDCMM ettt e e e e e e e e e e e e aae e e e e et aaaeeee s e nnneeas 78
LIST OF REFERENCESottt eeeenree e eeenaenae e e e e s seensnneeeees 83
INITIAL DISTRIBUTION LIST......outiiiiiiiiieee ettt e eeeeeeeeeeanreesessnsnssseanennns 85

vii

viii

Figure 2.1:
Figure 2.2:
Figure 2.3:
Figure 2.4:
Figure 2.5:
Figure 3.1:
Figure 3.2:
Figure 3.3:
Figure 3.4:
Figure 3.5:
Figure 3.6:
Figure 3.7:
Figure 3.8:
Figure 4.1:
Figure 4.2:
Figure 4.3:
Figure 4.4:
Figure 4.5:
Figure 5.1:
Figure 5.2:
Figure 5.3:
Figure 5.4:
Figure 5.5:
Figure 5.6:
Figure 5.7:
Figure 5.8:
Figure 5.9:

Figure 5.10:
Figure 5.11:
Figure 5.12:
Figure 5.13:
Figure 5.14:

LIST OF FIGURES

VTC PIAtfOTI ...ttt et 4
Point-to-Point Communication Modelcooeeeeieeecreeveereiecieeeeeeeeeen 5
BroadCast Communications Model.............coueeevemeeicieiseiecenieeeeeeeeeeeeeeeeeans 5
BroadCast Communications Model (with Reflector)cceoveeveeveveeeeeeeenne. 6
Multicast Communication Model..........ccoceuerereierieeririeereeeeeeeceeeerereeeeeeeeeeenens 6
Testbed System Configuration............cveeeveveeieeeieeeieeccereeeteeceeee et 9
Testbed TOPOIOZYcucuiriccceetrerenieteisiese et ese e 10
Layered MOELc.coeueinieirereeieeece ettt essene e seese e eenen 10
VTC System Diagram.......c.cccovveevrecenenieneeiieereeeesesesescsssesesesesseseseseesenees 11
SNMP Communication MOdelc.cceueveueuerereremiececeitneeseeseeeeeeeeeeesenesnns 12
Layered Model with SNMP.......cccorvurirrieerreeeeeeeetereee e 13
Java-SNMP Applet FIow Diagram...........cccoeueveeeecrereeeeieeeceeisescceeneseesennns 14
Graphical User Interface for Java-SNMP Appletcovvveeiceereieererennne. 14
Two-State On-Off Model........cccovieminieiieeeceeeece et 17
Markov Chain Representation of VBR SOUICE.........cceeeveeeeeeereeeereeeeeeennnn. 18
Video Source Simulation Applet Flow Diagram............ccceceuvveereeveeeenrennne. 19
Graphical User Interface for VBR Simulation Applet............ccovuevecueeence... 20
Audio/Video Simulation Applet Flow Diagram..............ccccevvvvevevevemeuenennee. 21
Input Traffic into Computer Interface, Video Onlyc.coevevveemerenerennnee. 27
Simulated TTAFICc.c.eevieieiieceeeeeee et 28
Plot of R/S Statistic, Video-Only Traffic (Measured)cccceveerueeevennn. 30
Plot of R/S Statistic, Video-Only Traffic (Simulated).........c.ccocevveeeereennnnen.. 31
Variance-Time Curve, Video-Only Traffic (Measured)..........ccccoevueveeeennnc. 32
Variance-Time Curve, Video-Only Traffic (Simulated)...........cccvevvveuemnn.... 33
IDC Curves for Video-Only Measured and Simulated Traffic..................... 34
Input Traffic at Computer Interface, Video/Audiocoveveueeeeereerereeerennnnne. 35
Simulated Video/Audio TIafficcccoveveueueeeeeeeieiieieeee e 36

Plot of R/S Statistic, Video/Audio Traffic (Measured)coceeevreeeennnnn... 37

Plot of R/S Statistic, Video/Audio Traffic (Simulated)..........c.cccovveerunn.n.. 38

Variance-Time Curve, Video/Audio Traffic (Measured)ccceveeuennn.n. 39

Variance-Time Curve, Video/Audio Traffic (Simulated)...........coceueuen..... 34

IDC Curves for Video/Audio Measured and Simulated Traffic.................. 35

ACKNOWLEDGEMENTS

I would first like to thank my wife, Hannah, for her thoughtfulness and
understanding throughout our entire tour here at the Naval Postgraduate School. She kept
me on track, and often let me know when spending too much time with the computers in
the testbed lab. Thank you Hannah.

A particular expression of gratitude goes to Professor Murali Tummala. When
the resident networking expert in the ECE curriculum was no longer available, Professor
Tummala had the interest and the funds available for me to gain valuable hands-on
experience. He provided me with an empty room, a general plan of what he expected,
and he cut me loose to design and implement a computer network, to include several
computers and two routers. Without his interest and support, this thesis would not have

been possible.

I. INTRODUCTION

As digital communication networks expand, they are becoming a more popular
and highly viable means of communicating in real-time over vast distances. The
networks themselves have evolved from an interconnection of a few PCs in an office on a
low bit rate (i.e., 4 Mbps) local area network (LAN) to several hundred or even a
thousand machines of various makes and models connected over different media from
coast to coast and around the world. As the networks expand, so do the demands placed
on them, especially as they move from providing non-real-time data to including real-
time, interactive communications as well.

In order to best predict how the overall wide area network (WAN) will react to
additions of LANs and make the most efficient use of the resources, some means of
understanding expected traffic patterns is necessary. There are many tools available that
allow network engineers to model and simulate the network, in order to analyze how a
small change will affect the overall infrastructure. However, in order to do this, accurate
models of the types of traffic that can be expected to be encountered are needed. Data
traffic, such as file transfers and electronic mail, is relatively easy to model [Subramanian
1995], but as new types of traffic are introduced, new models are required. More
importantly, traffic observed on networks is no longer simply non-real-time data traffic.
Early networks were designed to accommodate data traffic, which is predominantly
bursty in nature and requires reliable service from the network, but can tolerate some
delay. Interactive multimedia traffic, consisting of audio and video data streams, has now
come to dominate these networks. The multimedia traffic is real-time and stream-
oriented in nature, and must be delivered with a bounded delay though some loss of data
may be tolerated. With recent improvements in network and computing technology this
traffic has become more predominant. Studies have been done in order to analyze and
accurately model this new traffic as it appears on Ethernet networks [Leland 1994].

This thesis examines a traffic model specific to video teleconferencing (VTC).
The intent is to isolate this traffic on an ethernet testbed and derive the necessary
information to validate a statistical model for the variable bit rate (VBR) traffic generated
by a VTC system in an ethernet environment as well as the traffic generated by a
simulation of the minisource model. As VBR traffic is expected to dominate networks in
the future, an understanding of the nature of the traffic to be offered at the access points

of the broadband network is extremely important when developing adequate admission,
access and flow control mechanisms.

The objective of this thesis is to determine if a single type of traffic, specifically
VBR traffic generated by a desktop VTC system, adheres to a known and previously
predicted model of self-similarity. No attempts are made to determine the degree of self-
similarity of the traffic. The goal is to verify that the traffic exhibits the characteristics for
self-similarity as given by [Fowler 1991], [Leland 1994], and [Subramanian 1993].

The purpose of this thesis is to present the results of gathering data from the
testbed network. Chapter II provides background information on video teleconferencing
in general. Chapter Il provides specific information on the testbed network and tools
used in this thesis. Chapter IV reviews information pertinent to the formulation of a
statistical traffic model, specifically of a “self-similar” or “fractal” nature. Information on
determining whether a data sequence is “self-similar” is of particular interest while
determining the degree of “self-similarity” is not. Chapter V presents the tests conducted
in this thesis and the data derived from them. Chapter VI contains conclusions and

recommendations for future work.

II. VIDEO TELECONFERENCING

This chapter presents information pertaining to the importance of VIC and
background on how VTC is conducted. The chapter begins by discussing some basics of
VTC and then reviews models of communication, and discusses some commercial VIC
systems.

A. VIDEO TELECONFERENCING SYSTEM

With the advent in recent years of faster, more powerful, and significantly cheaper
computer components, communicating over networks has become increasingly popular.
Due to the tremendous popularity of the Internet, the computer networks have expanded
to include geographically-dispersed WANs outside of the local intranets and LANSs.
Upgrades in software and hardware have made multimedia communications increasingly
popular, and many applications have been developed to take advantage of the TCP/IP
(Transport Control Protocol/Internet Protoéol) protocol suite [Stevens 1994]. Video
teleconferencing has also gained popularity, both as a user application and as an area of
research. Many video teleconferencing software applications, both commercial and
shareware/freeware, are readily available and easy to use. With minor upgrades of sound
and video cards (in order to send and receive audio and video data streams, respectively)
current and legacy systems can be easily deployed into a fully-functional video
teleconferencing platform (see Figure 2.1).

B. VIDEO TELECONFERENCING

Video teleconferencing involves sharing multimedia data between two or more
users in distinct, often remote locations. The multimedia data consists of predominantly,
but is not limited to, video and audio data streams. The data may also include text-mode
“chat” systems or networked collaborative “whiteboard” applications in which users share
a common screen or application. In the past, VIC was a method of communication
thought to be relegated to large corporations and research institutions due to the high
expense of the components of such a system.

d?;ehoy speakers
video
camera
capture VIC NIC
device Software t0 network
|mia:mphone
micro-
processor

Figure 2.1: VTC Platform

VTC is currently used, or can be used, in almost any situation that requires two or
more people to communicate over geographically-dispersed locations. VTC is
increasingly being used in such areas as distance learning [Harju 1994], [Vetter 1995] and
telemedicine [Perloff 1993]. This increased use has also led to increased research in the
disciplines that support teleconferencing: video capture and compression techniques,
audio compression and transmission in packet-switched environments, and networking
technologies. With advances in these areas and in computer technology in recent years,
VTC as an application has moved from the corporate and research arenas to the
individual user desktop. Processing power of microprocessors has increased to the point
where specially-developed workstations are no longer required to conduct a VTC session,
and modem and network speeds have increased enough so that users with dial-up or
Ethernet connections, respectively, to the Internet have sufficient capabilities to conduct a
VTC session.

VTC is accomplished in one of several communications models, such as point-to-
point, one-to-many or broadcast, and multicast [Cobbley 1993]. Point-to-point
teleconferencing on a LAN or over the Internet takes place when two users establish a
connection between their systems through the use of their respective IP addresses, making
use of the connection-oriented TCP, while other systems establish a connection via a
dedicated Integrated Services Digital Network (ISDN) line, as in Figure 2.2. Once this

connection is established, the two users can share applications and documents, transmit
video and audio between their locations, and use collaborative applications.

User User

4
h 4

Figure 2.2: Point-to-Point Communication Model

Broadcasting involves three or more users in a connection-oriented, video
teleconferencing environment, with each user addressing multiple users. To be
interactive, this model would require that every user is connected to every other user.
Intuitively, this model tends to quickly lead to congestion on networks or network links
that cannot provide the appropriate bandwidth (see Figure 2.3). However, this model may
be adapted such that all users are connected through a central distribution or “reflector”
site. In this model, all users send and receive multimedia traffic to and from all other
users via reflector site “R”, again using TCP (see Figure 2.4).

Figure 2.3: Broadcast Communications Model

D

Figure 2.4: Broadcast Communications Model (with Reflector)

An alternative to broadcasting is multicasting, a one-to-many form of
communications (see Figure 2.5) in which information is transmitted to multiple
destinations simultaneously; it utilizes the connectionless User Datagram Protocol (UDP)
instead of TCP [Stevens 1994]. In the multicast communications model, all users are part
of a “multicast group” in which all datagrams are sent “best effort” without any guarantee
of actually being received by the distant station. An important aspect to consider is that
not all participants require the same communications capabilities. Some users may wish
to receive video and audio, but transmit only audio. Others may wish to receive video
and/or audio only without actively participating.

/\
VANRAN

Figure 2.5: Multicast Communication Model

C. STANDARDS AND COMMERCIAL SYSTEMS

Technological improvements in networking technology, compression algorithms
(codecs), microprocessors, and operating systems have made the real-time transmission of
video and audio data streams between general-purpose workstations and desktop personal
computers (PCs) an easily-attained application. Many legacy systems have sufficient
capabilities to make real-time communications to the desktop a reality. Low-end solutions
provide adequate quality for some important needs, negating the necessity for travel and
generally reducing business operating costs. Several standards have been proposed or
developed by the International Telecommunications Union (ITU), easing the transition to
compatible applications on desktop PCs. For example, H.320 is the established standard
for video teleconferencing over a WAN, providing for the coding, transmission, and
decoding of video and audio data streams over ISDN lines; H.323 defines how PCs can
interoperate to share video and audio data streams over both intranets and the Internet,
networks that do not provide a guaranteed quality of service; G.117, G.722, G.723,
G.728, and G.729 pei'tain to the encoding of audio data; and the T.120 series of standards
provides for multimedia communications protocols, used in common collaborative tools
such as whiteboards and application sharing. Older standards still exist, such as the
H.200 series which consists of several specific standards for user interface, picture
formatting, video and audio codecs (compression/decompression), call setup and
conference management [Perloff 1993].

Many commercial platforms exist for video teleconferencing, such as those
provided by PictureTel, V-Tel, and Vivo, but most of them are large conferenceroom
systems with specially located microphones and ISDN connections to remote locations.
Such systems are optimal for large conferences in a corporate or distance learning
environment but are unnecessarily large and unsuited for lesser needs. Desktop VTC,
however, provides a more suitable solution, in terms of size and money, for the user who
has nothing more than a PC connected to a network.

Video teleconferencing can provide several meaningful services in the military
environment to include the dissemination of intelligence data and improve coordination
and performance of dispersed units under distributed control. Interactive communications
shared by geographically-dispersed units will allow commanders to confer quickly, share
documents and images, remotely control surveillance vehicles, and better coordinate
special operations forces. In bandwidth-limited environments, commanders can eliminate

the main conferencing channel and utilize still images, maps and overlays, and an audio

channel] to quickly convey pertinent and time-sensitive information [Perloff 1993]. 1
This concludes the initial presentation of VTC systems and standards. The next

chapter illustrates the environment and tools used in this thesis, to include the testbed,

VTC software, SNMP, and the Java programming language.

III. TESTBED NETWORK

This chapter describes the system used in the thesis. Figure 3.1 shows the overall
configuration of the system used in the thesis. The Java-SNMP applet provides the
graphical user interface (GUI) for interacting with the Simple Network Management
Protocol (SNMP) in order to gather information from the SNMP agent residing on the
managed host engaged in a VTC session. The metrics gathered by the applet are stored in
a data file for analysis.

Java-SNMP Applet
VTC
Ma!'ager Session
3 Data Objects
Data File

Figure 3.1: Testbed System Configuration

The following sections provide specific information on components used in this
system.

A. TESTBED ENVIRONMENT

The environment in use for this thesis is a 10 Mbps Ethernet testbed network,
consisting of two distinct subnetworks connected via two Cisco Systems 2514 routers,
one of which is connected to the campus network at the Naval Postgraduate School (see
Figure 3.2).

The Cisco routers are dual serial, dual LAN routers, each with two synchronous
serial ports and two ethernet AUI ports. These routers provide suitable means for
segregating the computer systems into distinct subnetworks and isolating the testbed from
external traffic from the campus network. Both subnetworks operate using the IEEE
802.3 CSMA/CD LAN standard, with one subnet using 10Base-T cabling while the other
uses 10Base2 cabling. Each Ethernet port has a maximum transfer rate of 10 Mbps, and

the serial ports have a maximum transfer rate of 1.544 Mbps. The routing protocol used
by the routers is the Routing Information Protocol (RIP), allowing compatibility with the
campus network and necessitating the use of 8-bit subnet masks. The routers
communicate via a synchronous serial connection.

| | I router
10Base2 subnetwork
==
10BaseT subnetwork connection to
: Internet

Figure 3.2: Testbed Topology

All stations on the testbed are Intel-based PC systems. Each subnet has a server
running the Microsoft WindowsNT Server 3.51 operating systems, and several clients
running the Microsoft Windows95 operating system.

All PCs on the testbed communicate via the TCP/IP protocol suite, which is
provided along with the operating system. The layered model is shown in Figure 3.3
[Stevens 1994]. The VTC software resides at the application layer of the model, and the
video and audio data are packetized by the TCP, IP, and the Ethernet layers, and then
transmitted to the intended receiver.

VIC VIC
TCP TCP
P IP
Ethernet Ethernet
1 i

Figure 3.3: Layered Model

10

B. VIDEO TELECONFERENCING SOFTWARE

White Pine Software provides an excellent software-only solution for desktop
VTC in Enhanced CU-SeeMe, based on the original CU-SeeMe software produced at
Cornell University. Enhanced CU-SeeMe provides video teleconferencing based on the
point-to-point, broadcast, and multicast communication models (see Chapter II) via
TCP/IP over POTS (plain old telephone service), ISDN, LAN and the Internet, on several
platforms, including Microsoft Windows and Windows95, Macintosh and Power
Macintosh. Enhanced CU-SeeMe version 2.1 is used in this thesis. The software makes
use of Crystal Net Corporation’s Surface Fitting Method for video compression
(compression ratio reported by White Pine Technical Support is 24:1) and provides audio
sampling rates of 2.4Kbps, 8.5Kbps, and 16Kbps. The software receives uncompressed
video and audio data from the capture source (see Figure 3.4) and compresses the data for
transmission. When VTC data is received from an outside source, the software sends that
data to the appropriate display device: either the monitor or the speakers.

monitor speakers
video
camera
Videum Audio/Video Comm. e s
Card ['|Compression [Sofiware NIC
/ .
microphone network
P Host
Computer

Figure 3.4: VTC System Diagram
C. VIDEO/AUDIO CAPTURE CARD

The Videum Card (see Figure 3.4), from Winnov LLP, is the video and audio
capture card used in conjunction with the video teleconferencing software. The card
supports a range of image sizes from 32x24 to 704x576 pixels, as well as hardware video

11

compression for 30 frames per second (fps) 320x240 pixels, capture-to-disk, and audio
sampling rates of 8.0, 11.025, 22.05, or 44.1 KHz, in 8 and 16 bits. The video is captured
via the Hitachi color camera, model KV-C25A, mounted on top of the monitor, and sent
to the software for compression. The audio is relayed via a microphone headset. The
drivers used in this thesis are version 1.5.2 for Microsoft Windows95, available for
download from the Winnov technical support website. At the time of this writing, drivers
are also available for Microsoft Windows3.1 and NT4.0.

D. SIMPLE NETWORK MANAGEMENT PROTOCOL

The Simple Network Management Protocol (SNMP) is used to gather relevant
data from a host computer on the testbed. SNMP was adopted as a standard in 1989 to
provide an immediate, short-term means of using the existing TCP/IP protocol
infrastructure to monitor and manage devices attached to a network. SNMP is a set of
standards for network management consisting of a protocol, a database structure
specification (Structure of Managed Information, or SMI), and a set of data objects
(Management Information Base, or MIB) (see Figure 3.5).

Managed
Manager Device

Caoemt

data
objects

Figure 3.5: SNMP Communication Model

The protocol for SNMP version 1 is specified in Request for Comments (RFC)
document 1157. RFC 1155 defines the SMI, and RFC 1213 describes the managed
objects contained in the management information base for network management of
TCP/1P-based Internets, or MIB-II. Other RFCs define extensions to the SMI or MIB
[Stallings 1996]. SNMP resides at the application layer of the IP layer model and makes
use of the connectionless user datagram protocol (UDP) transport mechanism (see Figure
3.6) to issue requests for the status of specific data objects maintained by the agent on the

12

managed device (see Figure 3.5). These requests are encoded per the Basic Encoding
Rules (BER) associated with ISO Abstract Syntax Notation One (ASN.1), issued to the
agent on UDP port 161, and the responses are received on UDP port 161 and decoded
into human-readable form [Ben-Artzi 1990], [Stallings 1996]. Several commercial
products are available to provide the network manager with a simple means of issuing
requests for reasonably large networks and for extracting meaningful information
germane to the health and status of devices on the network.

SNMP SNMP
upp upp
1 ' P
Ethernet Ethernet
1)

port 161

Figure 3.6: Layered Model with SNMP

SNMP version 1 and MIB-II, based on RFCs 1157 and 1213, respectively, are
widely supported and easily accessed on all systems on the testbed. Information on octet
rates into and out of the network interface of the host computer was easily gathered using
a simple Java applet.

E. JAVA

Java is an object-oriented, platform-independant, interpreted programming
language developed by Sun Microsystems. Java allows for the development of either
complete applications or application stubs (applets) that require a web browser or other
suitable environment in which to operate ([Cornell 1996], [Flanagan 1996]), and is used
in conjunction with the Java SNMP package from Advent Network Management, Inc, to
provide the framework for developing an applet to facilitate gathering SNMP information
from the host computer polled in this thesis. The applet polls the host computer for data
objects specific to MIB-II, at a user-defined interval (as detailed in Chapter V). Java
allows for cross-platform development, in that any platform supporting the Java Virtual
Machine will be able to run the applet written for this thesis (Appendices A and B). The
development environment used in this thesis is Symantec Cafe 1.51, based on the Sun

13

Microsystems Java Development Kit version 1.0.2, running on Microsoft WindowsNT
Server 3.51.

Two Java applets were developed for this thesis: SNMP and video source
simulation. The former is described here and the latter in Chapter IV.

The Java-SNMP applet (see Appendix A for source code) has a simple flow (see
Figure 3.7). The applet was developed from a combination of standard Java classes and
classes specifically designed for SNMP. When the applet is first initialized by typing the
command “appletviewer MibCrusher.html” from the user prompt (DOS or Unix), the
graphical user interface (GUI) is available with several default settings; the IP address of
the host to be polled, the filename of the data file, and the number of seconds delay
desired between polls. These values can be easily changed by the user (see Figure 3.8).

JAVA
classes Polling Poll Save
/ Thread Agent Response
Applet ' i |
- / \
classes GUI

Figure 3.7: Java-SNMP Applet Flow Diagram

14

= Applet Viewer: Mib Crusher.class ME

Applet
MIB Crusher, ver 1.0
Messages:
PDU sent to host: 131.120.122.101 14
. Poll Count: 30
IP Address for host: Pause for 0 sec delay. —
[131120.122.101 | Closing Log Files

LogFile for host: Polling stopped.

|test1 dat |
Polling interval (sec):

lo |

Start Polling

Applet started.

Figure 3.8: Graphical User Interface for Java-SNMP Applet

The testing period begins following successful connection and communication
with a remote host running the video teleconferencing system. Once communication is
established, the “Start Polling” button on the GUI of the application is clicked to initiate
the polling thread of the applet and open the data file. The polling thread issues get-
request process data units (PDUs) to the agent on the managed device (see Figure 3.5)
and writes the response, along with a time stamp, to the data file. This thread continues
until it is interrupted by the user by clicking on the “Stop Polling” button, at which point
the data file is closed. From this point, the user can immediately initiate another polling
session.

The first test was conducted on the testbed using the point-to-point
communication model, in order to gather data during a video-only session. The session
consisted of “talking heads” in which the users on either system kept extraneous
movements to a minimum while moving only their heads and lips, thus simulating a
video teleconferencing session without the audio component. Throughout this session,
the agent on the managed host was polled in excess of 10,000 times, with the delay
between polls set to 0 seconds. The average time between polls for this test was 145.6
milliseconds. The returned data was stored in the “v1114.dat” logfile.

15

The second test was conducted across the campus network, with a remote system
in another building again using the point-to-point communication model. This allowed
for a more realistic setting, eliminating the annoyance of the audio echo that occurs while
teleconferencing with a “remote” system in the same room. This test used both the video
and audio capabilities of the video teleconferencing system. Again, the agent on the
managed host was subjected to more than 10,000 get—réquest PDUs during the session,
with the delay set to 0 seconds. The average time between polls was 111.2 milliseconds.
The returned data was stored in the “val114.dat” logfile.

This concludes the presentation of the testbed environment and tools used in this
thesis. The next chapter discusses self-similarity and the statistical models used to
simulate VBR traffic.

16

IV. TRAFFIC MODELING

This chapter discusses self-similarity and the model used to simulate a single
VBR video source. A VBR video source, such as a video teleconferencing application,
produces network traffic that is self-similar in nature [Likhanov 1995]. A model is
developed in order to simulate a VBR video source, and the self-similar nature of the
simulated traffic is verified. This model is then expanded to include an audio source in
order to simulate the aggregate audio and video traffic.

Whenever planning for the installation of a computer network, or the upgrade of
an existing network, especially one of appreciable size, it is instructive to have some idea
as to the traffic models to be encountered. Traffic models are especially useful in
developing congestion and flow control techniques, as is being done in the case of
Broadband ISDN (B-ISDN or ATM). Having some idea as to the traffic characteristics
that will likely be encountered on a network is particularly useful when a simulation tool
is used to first model the network and then simulate anticipated changes to the topology.
The effects of possible disruptions to the network can then be observed. As more and
more LANs are being interconnected via broadband networks, accurate traffic models are
required to produce meaningful admission, access, and flow control mechanisms.

A. SELF-SIMILAR NATURE OF TRAFFIC

Though the actual information traveling across a computer network is nothing
more than electrical impulses representing 1s and Os, data traffic is distinctly different
from multimedia traffic. Data traffic is predominantly bursty and requires reliable service
from the network, though it will tolerate delays. However, multimedia traffic is
interactive and stream-oriented, in that a continuous flow of information is expected to
be delivered within a bounded delay of 100-200 msec, and some data loss is tolerated.
Uncompressed audio and video data travel across the network at a constant bit rate,
whereas compressed data has a variable bit rate nature. Most existing network
infrastructures, however, were originally developed with data applications in mind and do
not provide the necessary bounded delay and loss required of interactive, multimedia
communications [Dilgac 1994].

The study and development of traffic models are ongoing areas of research in the
context of B-ISDN, especially for the types of traffic that are expected to utilize the B-
ISDN transport mechanism, but a thorough examination of the Ethernet traffic has

17

already been done [Leland 1994]. Standard models for network traffic, such as pure
Poisson and Markov-modulated Poisson processes, provide an inaccurate view of the
nature of the Ethernet traffic [Subramanian 1995]. Statistical analysis of high-quality,
high-resolution Ethernet LAN traffic data shows the self-similar or fractal nature of
traffic, behavior that is markedly different from conventional telephone traffic and from
generally accepted models. The term “self-similar” refers to the characteristic in which
the traffic appears to be similar, invariant of the time scale at which the traffic is
observed. That is, traffic plots retain similar periods of burstiness regardless of the time
resolution in which the traffic is viewed. The graphical representation of self-similar
traffic lacks a natural burst length regardless of the number of aggregated sources whereas
the traffic plot derived from traditional models smooths out as aggregation of sources
increases. Traffic plots for currently considered stochastic models become
indistinguishable from white noise when aggregated over even a few hundred
milliseconds [Leland 1994].

In order to define self-similarity [Leland 1994], let sequence X be a covariance
stationary stochastic process with mean p, variance o°, and autocorrelation function r(k),
k = 0. From this sequence, a new covariance stationary time series, X , is obtained by
averaging the original series over non-overlapping blocks of size m. For each m, X™ is
given by

X = (Um)Kimms1 + Xenmsz + - + Xim), k= 1

The original sequence X is called (exactly) second-order self-similar if for all m =
1,2,...,

var(X™) = *'m®, 0< B < 1
and
(k) = r(k), k= 0
The original sequence is (asymptotically) second-order self-similar if, for all given
m, the corresponding aggregated processes X™ are the same as or become

indistinguishable from X, with respect to their autocorrelation functions.

18

An important characteristic that differentiates second-order self-similar process
from typical traffic models considered in current literature is the presence of a
nondegenerate correlation structure for the aggregated processes X™ as m = . The
correlation structure of the aggregated processes X" for typical traffic models tends
toward second-order white noise:

(k) = 0, as m = =, for k> 1

It is in the context of B-ISDN that these characteristics are of particular
importance as the nature of congestion produced by self-similar traffic is different and
significantly more complicated than the standard formal models accepted to date. A B-
ISDN network is expected to support many classes of traffic, including variable bit rate
(VBR) traffic produced by video: teleconferencing systems. In order to regulate
congestion on such a network, research needs to be done in the area of access control and
particularly accurate models will be required, without which a proposed access control
scheme will be somewhat less than reliable [Likhanov 1995].

B. MINISOURCE

Video traffic is expected to dominate the bandwidth of future broadband
networks. The most basic representation of VBR video traffic is an equivalent process
based on a sum of identical two-state on-off sources. The two-state on-off model is
shown in Figure 4.1 [Schwartz 1996].

off o an

A bits/pixel

Figure 4.1: Two-State On-Off Model

The model, or minisource, moves back and forth exponentially between the “off”
and “on” states. While in the “on” state, A bits/pixel are offered by the process. A total

19

of M minisources are concatenated to form a continuous-time, discrete state Markov
chain, representing a video source (see Figure 4.2). The resultant model is a two-state
doubly stochastic Poisson process with exponential sojourn times, given by parameters a
and b. This model is fully capable of capturing the self-similar characteristics of video
traffic [Subramanian 1995]. Other models that have been mathematically proven to
exhibit self-similar characteristics are a superposition of infinity minisources with Pareto
service demands [Likhanov 1995] and a fractional Gaussian noise source [Cinotti 1995].

Ma M-1)a

A bits/pixel 2A bits/pixel MA bits/pixel

Figure 4.2: Markov Chain Representation of VBR Source

The Markov chain in Figure 4.2 is an equivalent process defined to be the sum of
M two-state minisources with exponential sojourn times a and b, in which A bits/pixel
are transmitted while in the “on” state. The composite process is represented by an
(M+1)-state Markov chain. The transmission rate of the composite process is quantized
to the levels 0, A, 2A, ..., MA bits/pixel. The three minisource model parameters a, b,
and A are given by [Schwartz 1996]

b=3.9/(1 + 5.05 N/M)
a=3.9-b=19.7N/M(1 + 5.05 N/M)
A=04/6=0.1 +052N/M

The composite process matches the M-minisource model to N multiplexed video
sources. Given that M=20 and N=1, we have a=0.78, b=3.12, and A=0.13 bits/pixel.
Each quantized level is characterized by 7339.296M bits (or 924.9M bytes) transmitted
during the sample time slot. The time slot is determined by approximating the time
between samples while gathering data from the testbed. For the purpose of simulation,
the time slot is set to 145 msec, which is the average time between polls for the video-
only traffic.

20

- C. SIMULATION

The model has predetermined values for the transitions between states (Ma, (M-
Da, ..., a, and b, 2b, ..., Mb) based upon the values of a and b. The model begins at
STATE=0, and proceeds to STATE=1, then to STATE=2, etc. At each state, two
exponentially distributed random variables are computed [Leon-Garcia 1994]:

X1 =(-1/a) In(U,)
X, =(-1/b) In(Uy)

where X and X are the exponentially distributed random variables with parameters a and
b, and U; and U; are uniformly distributed in [0,1]. The values a and b are transition
rates from state[i] to state[i+1] and state[i-1], respectively; and the decision of which state
to transition to is made based upon the smaller of the two random variables, X; and X,.
At each state, the time stamp and the number of bits transmitted are recorded.

A Java applet to model the VBR video source in Figure 4.2 has been developed.
The algorithm consists of a concatenation of twenty minisources into a Markov chain
representation of the VBR source. The program flow of the applet can be seen in Figure
4.3. The source code for the applet is included in Appendix B.

Simulation STATE=1 Transmit Determine
Thread X bytes Next State
|
Java
classes Applet
GUI

4.3: Video Source Simulation Applet Flow Diagram

The simulation applet is invoked using the command “appletviewer
SimTest.html” at the user prompt (DOS or Unix). After the GUI (see Figure 4.4) is
displayed, the user starts the simulation thread by clicking on the “start” button, and halts
the thread by clicking on the “stop” button. The “close” button disposes of the applet.

21

The logfile into which the simulation data is saved is determined by the user, and is set to
“sim1.dat” by default.

When the simulation thread is started, the logfile is opened, and the initial state of
the Markov chain is 0. The simulation then proceeds to state 1 and the time stamp and A
bytes are recorded in the logfile. The simulation algorithm must then determine into
which state to proceed by computing two exponential random variables and moving in the
direction of the lower value. At each state, the number of bytes and the time stamp are
recorded in the logfile.

E%Applel VYiewer: SimTest.class

Applet
LogFile: Messages:
|sim1.dat I {Event: 103

Simulation stopped.

Figure 4.4: Graphical User Interface for VBR Simulation Applet

The video source simulation applet was extended with the addition of an audio
source simulation in order to produce an aggregate simulated traffic source (see Figure
4.5). The audio source is simulated in accordance with the minisource model shown in
Figure 4.1.

The source code for the audio/video simulation applet is in Appendix C. The
applet operates in an identical manner to the video source simulation applet, with the
addition of an audio model to simulate the audio component. A program thread for the
audio source runs concurrently with the thread for the video source. When the video
source is sampled, the audio source is sampled as well. The parameters for the audio
source model are chosen such that the average silent interval (1/a) is 0.6 sec, and the
average talk spurt (1/b) is 0.4 sec [Schwartz 1996]. Each sample returns the number of
bytes generated during the talk spurt of the audio source.

22

Java
classes

Applet

Simulation STATE=1 Transmit Determine
Thread X bytes Next State
I
Audio
GUI Simulation

Figure 4.5: Audio/Video Simulation Applet Flow Diagram

The data recorded from the audio/video source simulation applet is stored in the

logfile “sim2.dat”, in the same manner as the video source simulation applet. For the

purpose of simulation, the time slot is set to 110 msec, which is the average time between
polls for the measured audio/video traffic.

This concludes the discussion of self-similarity and statistical models used to
simulate VBR traffic. The next chapter illustrates and discusses the results of graphical
analysis of measured and simulated traffic, for both video-only and aggregate video/audio

traffic.

23

24

V. RESULTS

This chapter describes the results of graphical analysis of the data obtained from
the testbed (measured data) and from the video source simulation applet (simulated data).
The measured video/audio data is an aggregate of video and audio traffic and is displayed
along with data from a video/audio simulation applet in order to illustrate the self-similar
nature of the aggregate traffic. The results presented in this chapter illustrate the self-
similar nature of VTC traffic.

A. DATA COLLECTION

The purpose of data gathering in this thesis is to obtain specific information on the
traffic generated by a video teleconferencing application in a packet-switched
environment. To this end, it was decided that SNMP would be used as it is readily
available on systems utilizing the TCP/IP protocol suite, and it required no additional
hardware and only a modest amount of additional software. Specifically, the
management information base (MIB-II) variable “interfaces.ifTable.ifEntry.ifInOctets”
(fully-qualified object identifier 1.3.6.1.2.2.10 [Stallings 1996]) was continually polled
throughout the testing period, using a customized Java applet (Chapter II). Each time the
applet issues a get-request protocol data unit (PDU) to the agent on the managed station,
it obtains the current system time (in milliseconds). This timestamp is then written to a
data file in columnar format along with the information provided in the get-response PDU
returned by the agent on the managed station. This format made the data file especially
easy to access using MatLab (see Appendix C), which was used for display and analysis
of the data.

Host computers used in this thesis utilized hardware and software as outlined in
Chapter III. All systems involved in data gathering utilized the same Enhanced CU-
SeeMe conference settings:

Maximum Transmission Rate 80 kbps
Maximum Receive Rate 300 kbps
Image Size 320x160 pixels

Table 1: Common Enhanced CU-SeeMe Conference Settings

25

B. RESULTS

Data gathered during the video teleconferencing sessions and the simulation was

-analyzed with the assistance of MATLAB [MathWorks 1992]. The MATLAB “.m” files

used for this purpose are listed in Appendix C. The basis for the analysis of the traffic
data is given by [Leland 1994], in which statistical and graphical tools are used to not
only establish the self-similar nature of the traffic, but also determine the degree of the
self-similarity of the traffic via an estimate of H, the Hurst parameter. This thesis uses
similar graphical methods to determine the self-similar nature of the traffic, which is
represented as a data sequence within logfiles generated by Java applets (Chapters III and
IV). These methods are the rescaled adjusted range statistic (R/S statistic), the variance-
time curve, and the index of dispersion for counts (IDC). For the purposes of this thesis,
the analysis of the data will be conducted only on the traffic that arrived at the host
computer interface, which corresponds to the ifInOctets data object, from both tests. A
detailed description of the Hurst parameter and how to determine it can be found in
[Leland 1994] and is beyond the scope of this thesis.

The first video teleconferencing session was conducted to gather data on video-
only traffic (see Chapter IIT) using the point-to-point communication model. Figure 5.1 is
a graphical representation of the video-only traffic received by the computer interface, in
kilobytes per second (kBps) versus time in milliseconds. The data was gathered by the
Java-SNMP applet (Chapter III). This plot is different from traffic generated by the
traditionally accepted models for telephone and packet traffic. These conventional
stochastic models, be they compound Poisson or Markov processes, generate traffic plots
that are indistinguishable from white noise when viewed on scales from tens to hundreds
of seconds [Leland 1994].

26

Input Traffic

11| S —

...................................

& (11 il | L |
THITE A T

10

(el

10
msec x 10°

Figure 5.1: Input Traffic Into Computer Interface, Video Only

Figure 5.2 is a graphical representation of the traffic generated by the video source
simulation Java applet. The simulated video traffic data is generated for the same number
of data points as that in Figure 5.1. Our goal here is to apply the same metrics to both
measured (Figure 5.1) and simulated (Figure 5.2) data to illustrate that, whether measured
or simulated, the video data exhibits self-similar characteristics.

The traffic information from both data sets is composed of a data sequence of
10000 data points. The same number of data points are used in order to make a relevant
comparison between the measured and simulated data.

27

Simulated Traffic

60 e

P S (e e
[}
'
]
1
[l
1
]
t
[
1
1
1
1
1
1
1
B L L

40+

30

kBps

5
msec x 10

Figure 5.2: Simulated Traffic

Each sample sequence of 10000 data points, X, is considered to be a covariance
stationary stochastic process [Leland 1994] with mean p, variance 02, and autocorrelation
function r(k), k 2 0. From this sequence, a new covariance stationary time series, X" is
obtained by averaging the original series over non-overlapping blocks of size m. For the
purposes of this thesis, m = [10 20 50 100 200 500 1000 2000 5000 10000], where m =
10000 represents the original sequence. The original sequence can then be called self-
similar if, for all given m, the corresponding aggregated processes X" exhibit the same
characteristics as or become indistinguishable from X (see Chapter IV).

Self-similarity can be determined based on several metrics. In the following, three
such metrics are used to numerically measure the self-similar nature of both the collected
and simulated data described above.

28

1. R/S Statistic

The rescaled adjusted range statistic, or R/S statistic, is used to infer the degree of
self-similarity of a process. The R/S statistic for a given data sequence (Xi: k = 1, 2,...,
n), with mean 11, and variance Gz(n), is computed as follows [Leland 19941:

R(n)/S(n) = 1/6 [max(0,W;, W,..., W) - min(0, Wy, W,..., Wp)]

where Wy = (X; + X5 + ... + Xp) - kpn (k = 1) and R(n)/S(n) refers to the R/S statistic as a
function of n. A typical rescaled adjusted range plot (plot of the R/S statistic) starts with
a transient zone but eventually settles down and fluctuates about a particular asymptotic
slope. When plotted on a logarithmic scale as a function of m, the asymptotic slope of the
R/S values is between 1/2 and 1 for self-similar processes [Leland 1994].

Figure 5.3 is a plot of the R/S statistic for the video-only traffic. The traffic
displays an asymptotic slope that is clearly between 1/2 and 1 (lower and upper dashed
lines, respectively), illustrating that the VBR traffic measured during the video-only test
is self-similar in nature.

29

3 Plot of R/S statistic
107 . :
10°}
@
o
S
o
o
10
10° 2 3 4
10 10 10
log10{m)
Figure 5.3: Plot of R/S Statistic, Video-Only Traffic (Measured)

Figure 5.4 is a plot of the R/S statistic for the simulated traffic, shown in Figure

5.2. This traffic also

displays characteristics of self-similarity based on the R/S statistic
as the asymptotic slope of the R/S statistic data falls between 1/2 and 1 (lower and upper

dashed lines, respectively).

30

Plot of RfS statistic

10 . j
103— ,—’/"_
@ | b /"’_
o -
=4
o
=)
10°
101 2 l3 4
10 10 10

log10(m)
Figure 5.4: Plot of R/S Statistic, Video-Only Traffic (Simulated)
2. Variance-Time Curve

When the variances of the aggregated sequences X™ are plotted on a logarithmic
scale as a function of m, the asymptotic slope of the data points is distinctly different from

-1. Values for the asymptotic slope between -1 and O suggest self-similarity [Leland
1994].

31

Variance (input) vs window size (m)
107 ¢ ' x

log10(variance)
o

—_
OI

10-2 1 I2 |3 4
10 10 10 10

log10(m)

Figure 5.5: Variance-Time Curve, Video-Only Traffic (Measured)

The variance-time curve for the video-only traffic is displayed in Figure 5.5. The
asymptotic slope of the data is greater than -1, indicating the self-similar nature of the
data. However, the slope is not significantly greater than -1 (dashed line has slope of -1),
as illustrated in [Leland 1994], suggesting that the data may not be quite as self-similar as
first supposed. However, this metric is not solely employed to determine the degree of
self-similarity of the traffic, but rather simply to illustrate that the data has self-similar
characteristics. The variance-time curve in Figure 5.6 illustrates that simulated traffic is
self-similar in nature, in the same manner as was illustrated for Figure 5.5 (dashed line
has slope of -1).

32

Variance (input) vs window size (m)

log10(variance)
=)

—
ol
w

-4
10’ 10° 10° 10
log10(m)

10

Figure 5.6: Variance-Time Curve, Video-Only Traffic (Simulated)
3. Index of Dispersion for Counts (IDC)

The index of dispersion for counts (IDC) is a popular measure used to capture the
variability of traffic over different time scales [Cinotti 1995], [Fowler 1991], [Leland

1994], and [Subramanian 1995]. For a given time interval of length L of sequence X, the
IDC is given by:

IDC(L) = var(X(L)) / E[X(L)]

Stated simply, the IDC for a sequence of length L is the ratio of the variance of the
number of arrivals during the interval to the expected value of the number of arrivals
during that same interval.

The IDC is plotted on a logarithmic scale as a function of L, as seen in Figure 5.7.
For self-similar processes, the IDC increases monitonically throughout the time span.

33

Conventional traffic models, such as pure Poisson processes, have an IDC equal to one.
Other arrival models, including batch Poisson, deterministic batch, and Markov-
modulated Poisson processes, have IDCs that converge on fixed values over the time
scales observed [Fowler 1991]. The IDC curve provides an immediate, engineering-
based approach to testing a set of traffic measurements for self-similarity [Leland 1994].
Figure 5.7 presents the IDC curves for the video-only traffic (solid line) and the
simulated traffic (dashed line). The curves are monitonically increasing, indicating that
the traffic is self-similar in nature. The observed gap between the curves is a result of the
characteristics of the specific traffic data used in deriving the curves (Figures 5.1 and
5.2). While the monitonically increasing behavior is maintained, the curve could shift up

or down for different video sequences.

3 IDC vs sequence length (L)
10 . - T
10° | :
1 ,.--"”
6’“10 3 - 3
=)
S
210’
-1
10 |
— Yrante
10_2 1 ‘2 l3 4
10 10 10 10

log10(L)

Figure 5.7: IDC Curves for Video-Only Measured and Simulated Traffic

34

C. RESULTS FOR VIDEO/AUDIO TRAFFIC

Figure 5.8 shows the graphical representation of traffic gathered during a video
teleconferencing session in which both the video and audio components of the system are
used. The input traffic at the computer interface (NIC) is an aggregation of the video and
audio traffic generated during a video teleconferencing session in which both users send
and receive video and audio data. In this session, conditions similar to those in the video-
only case were applied, in that both users kept extraneous head and hand movements to a
minimum, giving the session a “talking heads” quality.

Input Traffic

ik
;1

msec 5

x 10

Figure 5.8: Input Traffic at Computer Interface, Video/Audio
Figure 5.9 is a graphical representation of the traffic generated by the video/audio

source simulation applet. The simulated traffic data is generated for the same number of

data points as those in Figure 5.8. Our goal here is to apply the same metrics to both

35

measured (Figure 5.8) and simulated (Figure 5.9) data to illustrate that, whether measured

of simulated, the video/audio data exhibits self-similar characteristics.

Simulated Traffic

<11 N S RN SR AR :

<] S RN S S S

)
1
'
)
[l

i
glll l l‘

20 it ab-nd-H

kBps

15

10

10
msec x 10°

Figure 5.9: Simulated Audio/Video Traffic

Figure 5.10 is a plot of the R/S statistic for the traffic shown in Figure 5.8. The
plot of the R/S statistic for the video/audio shows similar characteristics to the R/S
statistics plotted in Figures 5.3 and 5.4, indicating in the same manner that the
video/audio traffic is also self-similar in nature. The asymptotic slope of the R/S statistic
data in Figure 5.10 falls between 1/2 and 1 (lower and upper solid lines, respectively),
illustrating that the aggregate video/audio data is also self-similar.

36

10
1
10°}
%)
o
=1
o
o
10°}
101 2 l3 4
10 10 10
log10(m)

Figure 5.10: Plot of R/S Statistic, Video/Audio Traffic (Measured)

Though a single data point falls outside of the slope region defined by the dashed lines,

most of the data points fall within the region illustrating the self-similar nature of the
measured traffic.

Figure 5.11 is a plot of the R/S statistic for the simulated traffic, shown in Figure
5.9. This traffic also exhibits characteristics of self-similarity based on the R/S statistic as

the asymptotic slope of the R/S statistic data falls between 1/2 and 1 (lower and upper
dashed lines, respectively).

37

Plot of R/S statistic

10 -
10°}
7
o
S
=
S
10°}
101 2 L3 ‘ 4
10 10 10
log10(m)

Figure 5.11: Plot of R/S Statistic, Video/Audio Traffic (Simulated)

Figures 5.12 and 5.13 show plots of the variance-time curves for the measured and
simulated video/audio traffic, respectively. Again, these plots show characteristics
similar to the plots for the video-only traffic case (Figures 5.5 and 5.6). The curve
illustrates the self-similar nature of the traffic, in that the asymptotic slope of the curve is
approximately -1 or greater. Figure 5.14 shows plots of the IDC curves for the
video/audio measured (solid line) and simulated (dashed line) traffic. These plots show
that the video/audio traffic is self-similar as indicated by the monitonically increasing
slopes of these curves. As in Figure 5.7, the observed gap between the IDC curves for the
measured and simulated traffic data is a result of the characteristics of the data (see
Figures 5.8 and 5.9), and could be different for different video sequences or simulation
runs.

38

Variance (input) vs window size (m)

log10(variance)
=

—
Ol

10 1 3 3 4
10 10 10 10
log10({m)

Figure 5.12: Variance-Time Curve, Video/Audio Traffic (Measured)

39

Variance (input) vs window size (m)

10° ¢
107}
m
Q
=
g
S 10°}
=1
o
_9 L
10°}
10—4 1 '2 l3 4
10 10 10 10

log10(m)

Figure 5.13: Variance-Time Curve for Video/Audio Traffic (Simulated)

40

IDC vs sequence length (L)

-l
o
(v}

-
o,
N
—

log10(IDC)

— Measured
--- Simulated

10° 10°
log10(L)

10

Figure 5.14: IDC Curve for Video/Audio Measured and Simulated Traffic

This chapter has shown, through the graphical representation of three metrics, that
the traffic generated by a VTC application and by a VTC simulation model, are self-
similar in nature. This conclusion is somewhat restrictive in that the self-similarity is
based upon only three metrics (R/S statistic, variance-time curve, and the IDC curve) and
a small data sequence (10000 samples) relative to the exhaustive study conducted in
[Leland 1994], which used hundreds of thousands of high resolution samples. Perhaps,
further study and more metrics are required to fully support the claims of self-similarity

made in this chapter.

This concludes the discussion of the results of graphical analysis of traffic

captured for this thesis. The next chapter presents the conclusions and recommendations

for future work.

41

VI. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK

A. CONCLUSIONS

In this thesis characteristics of VBR traffic generated by a VTC application on an
Ethernet LAN were studied in order to validate the self-similar nature of VBR traffic.
The traffic studied in this thesis consisted solely of the VBR traffic, whereas others, such
as [Leland 1994] have studied Ethernet traffic as a whole, aggregating traffic from many
applications (interactive, multimedia, rlogin/telnet, file tranfer, electronic mail, etc.). A
Java applet was written in order to facilitate gathering SNMP data from a managed host
on the testbed that was participating in a VTC session. Additionally, a Java applet was
written in order to simulate the VBR traffic, based on statistical models presented in
[Schwartz 1996]. The data gathered by these applets was then analyzed using three
metrics (R/S statistic, variance-time curve, and IDC curve) in order to graphically
illustrate the self-similar nature of the VBR traffic.

The graphical analysis presented in chapter V illustrated that the VBR traffic
produced by both a VTC application and the simulation applets were self-similar in
nature. This conclusion supports the assertion that traffic models currently in use are
inadequate to describe to the true nature of the traffic found on LANs [Leland 1994].
Based solely on the data gathered and the metrics used in the analysis, the VBR traffic
was determined to be self-similar in nature.

Studies such as those conducted in this thesis are extremely important in
developing accurate traffic models. As wide area connectivity between LANs is moved
to the broadband infrastructure and ATM transport mechanism, research must be
conducted in providing admission, access and flow control to all supported traffic types,
and especially to VBR traffic, as it is expected to dominate the available bandwidth.
VBR traffic produced by a VTC application is one of several types of traffic that will be
presented at the access points of the broadband networks. Accordingly, accurate traffic
models are required for analysis and study in order to properly configure the broadband
networks to support the traffic. For instance, buffers need to be large enough to
accommodate the traffic within acceptable loss limits, but not so large as to cause
excessive delays in the traffic. This is particularly important when planning to support
real-time applications, such as VTC.

43

Basic concepts of VTC, the testbed and tools used in this thesis, and traffic
modeling were presented. A VTC application was used to generate the VBR traffic on
the testbed. A Java applet was used to gather SNMP information from a managed host on

the testbed in order to derive the necessary data for the thesis. Additionally, a Java applet

was used to model and simulate the video-only and aggregate video/audio traffic based on
statistical models provided by [Schwartz 1996].

B. RECOMMENDATIONS FOR FUTURE WORK

The tools and metrics used in this thesis applied to study the nature of the traffic
gathered from the testbed and the simulation applets. However, further tests should be
conducted under a wider range of conditions, using more metrics and a much larger
sample set in order show conclusively the self-similar nature of VBR traffic. [Leland
1994] used hundreds of thousands of high resolution samples in order to show that the
aggregate traffic gathered from an Ethernet network, without distinguishing traffic types,
is self-similar in nature. This thesis has analyzed VBR traffic only, in order to illustrate
that this traffic is self-similar in nature.

APPENDIX A: JAVA-SNMP APPLET SOURCE CODE

A. MIBCRUSHER.JAVA

/**
* author: H. Carvey

* file: MibCrusher.java

* usage: appletviewer MibCrusher.html

%

* Note: Due to security, this applet will not work in Netscape, as
* you may not write files to the hard drive. Appletviewer

* must be used.

%

* This file provides the graphical front-end and exception

* handling for the applet.

%k

* Environment: WindowsNTServer 3.51; Symantec Cafe 1.5

* Project files: PollThread.java, snmpGet.java
E 3

%

* 26 Oct 96
**/
import java.applet.*;

import java.awt.*;

import java.io.*;

import java.util.*;

import Snmp.*;

public class MibCrusher extends Applet {

Button Start, Stop, About;
TextField host,file,polllnt;
int poll_int;

TextArea messages;

String def_log = "test1.dat";
String hostIP = null;

String logfile = null;

/l Thread
PollThread pollThread;

// Fonts
Font titleFont = new Font("Helvetica", Font. BOLD + Font.ITALIC, 24);

45

// init method
public void init() {

// containers for all components
Panel panell, panel2, buttonpanel;

// Layout manager for each panel
GridBaglayout gridbag = new GridBagLayout();

// components
Start = new Button("Start Polling");
Stop = new Button("Stop Polling");
About = new Button("About");

file = new TextField(15);
file.setEditable(true);
file.setText(def_log);

host = new TextField(15);
host.setEditable(true);
host.setText("131.120.122.101");

pollInt = new TextField(15);
pollInt.setEditable(true);
pollInt.setText("1");

messages = new TextArea(12,40);
messages.setEditable(false);

// panell
panell = new Panel();
panell.setLayout(gridbag);
constrain(panell, new Label("IP Address for host:"),0,0,1,1);
constrain(panell, host,0,1,1,1);
constrain(panell, new Label("LogFile for host:"),0,2,1,1);
constrain(panell, file,0,3,1,1);
constrain(panell, new Label("Polling Interval (sec): "),0,4,1,1);
constrain(panell, polllnt,0,5,1,1);

// panel2
panel2 = new Panel();
panel2.setLayout(gridbag);
constrain(panel2, new Label("Messages: "),0,0,1,1);
constrain(panel2, messages, 0,1,1,3, GridBagConstraints. HORIZONTAL,

46

GridBagConstraints. NORTH, 1.0,0.0,0,0,0,10);

// buttonpanel

buttonpanel = new Panel();

buttonpanel.setLayout(gridbag);

constrain(buttonpanel,Start,0,0,1,1,GridBagConstraints. NONE,
GridBagConstraints. CENTER,0.3,0.0,0,0,10,0);

constrain(buttonpanel,Stop, 1,0,1,1,GridBagConstraints. NONE,
GridBagConstraints. CENTER,0.3,0.0,0,0,10,0);

constrain(buttonpanel,About,2,0,1,1,GridBagConstraints. NONE,
GridBagConstraints. CENTER,0.3,0.0,0,0,10,0);

// Label

Label name = new Label("MIB Crusher, ver 1.0", Label. CENTER);
name.setFont(titleFont);

// arrange panels in main applet panel

this.setLayout(new BorderLayout());
this.add("North",name);
this.add("West",panell);
this.add("Center",panel2);
this.add("South" buttonpanel);

}// init()

// main constrain methods for GridBagLayout
public void constrain(Container container, Component component,

}

int grid_x, int grid_y, int grid_width, int grid_height,
int fill, int anchor, double weight_x, double weight_y,
int top, int left, int bottom, int right)

GridBagConstraints ¢ = new GridBagConstraints();
c.gridx = grid_x; c.gridy = grid_y;
c.gridwidth = grid_width; c.gridheight = grid_height;
c.fill = fill; c.anchor = anchor;
c.weightx = weight_x; c.weighty = weight_y;
if (top+bottom-+left+right > 0)

c.insets = new Insets(top,left,bottom,right);

((GridBagLayout)container.getLayout()).setConstraints(component,c);
container.add(component);

public void constrain(Container container,Component component,

int grid_x, int grid_y, int grid_width, int grid_height)

47

{
constrain(container,component,grid_x,grid_y,grid_width,grid_height,
GridBagConstraints. NONE,GridBagConstraints. NORTHWEST,0.0,0.0,0,10,0,10);
}

public void constrain(Container container, Component component,
int grid_x, int grid_y, int grid_width, int grid_height,
int top, int left, int bottom, int right)
{
constrain(container,component,grid_x,grid_y,grid_width,grid_height,
GridBagConstraints. NONE,GridBagConstraints. NORTHWEST,0.0,0.0,top,
left,bottom,right);

}

// event handler method
public boolean handleEvent(Event evt) {

if (evt.id == Event. ACTION_EVENT && evt.target == Start) {

StartPolling();
return true,

}

else if (evt.id == Event. ACTION_EVENT && evt.target == Stop) {
StopPolling();

return true;

}

else if (evt.id == Event. ACTION_EVENT && evt.target == About) {
messages.appendText("\nMIB Crusher\n");
messages.appendText("by: Harlan Carvey\n");
messages.appendText("Special Thanks to: \n");
messages.appendText(" - Sun Microsystems, for their way\n");
messages.appendText(" kewl programming language, Java\n");
messages.appendText(" - Advent Network Mgmt, for their most\n");
messages.appendText(" excellent SNMP packale for Java\n");

return true;

}

return super.handleEvent(evt);
}// event handler

// StartPolling method
private void StartPolling() {

48

logfile = file.getText();
hostIP = host.getText();

int poll_int = Integer.parselnt(pollInt.getText());

pollThread = new PollThread(messages,hostIP,logfile,poll_int);
pollThread.start();

messages.appendText("Polling Thread started...\n");

}// StartPolling method

// StopPolling method
private void StopPolling() {

pollThread.CloseLogFile();
pollThread.stop();
messages.appendText("Polling stopped.\n");

} // StopPolling method
H/ class MibCruiser

B. POLLTHREAD.JAVA

7% 3% 3 s vk e sk o sk sheoke e ok ok sk sk ok sk sk sk e ok sk ok ok sk ok ok sk sk sk sk sk sk sk sk sk skesk sk skeskeskeske sk sk ske ke sk skesk ok sk sk sk sk skeske sk ke sk skl sk skok sieskeskeskokokok ok

author: H. Carvey

file: PollThread.java

File is the thread for sending get-requests
Applet sends multiple OIDs in each get-request to the
host, at user-defined interval, and prints results to
user-defined log file. Defaults provided.

Constructor: PollThread(TextArea, String[], int)

Environment: WindowsNTServer 3.51, Symantec Cafe 1.5

Proj files: MibCrusher.java, snmpGet.java

¥ K X X K K ¥ X ¥

*

*26 Oct 96
***/
import java.io.*;

import java.awt.*;

import java.util.*;

import Snmp.*;

import snmpGet;

public class PollThread extends Thread {

49

/I OIDs used in original implementation of the application
// String oid[] = {"2.2.1.10.1","2.2.1.16.1","4.3.0","4.10.0" };
String oid[] = {"2.2.1.10.2","2.2.1.16.2"};
File Log;
FileOutputStream os;
PrintStream ps;

String host;

String logFile;
snmpGet snmp_get;
TextArea output;
int pollcount = 1;
int pause;

SnmpAPI api = new SnmpAPI();
SnmpSession session;

// constructor
public PollThread(TextArea messages, String Host, String logfile, int delay){
output = messales;
host = Host;
logFile = logfile;
pause = delay;
}//constructor

public void run() {
api.start();

// instantiate a new session
session = new SnmpSession(api);
session.peername = host;
session.community = "public";
session.remote_port = 161;
session.retries = 0,
session.timeout = 10000;

try {
session.open();

}

catch(SnmpException e) {
System.out.println("Cannot open session.");

}

OpenLogFiles();

50

long start = System.currentTimeMillis();
while(true){

ps.print((System.currentTimeMillis() - start) + " ");

/! send PDU's to host
snmp_get = new snmpGet(api,session,oid,host,ps);
output.setText("PDU sent to host: " + host + "\n");

output.appendText("Poll Count: " + pollcount + "\n");
pollcount++;

output.appendText("Pause for " + pause + " sec delay.\n");
System.gc();

try {
this.sleep(pause* 1000);

}

catch (InterruptedException e) {
output.appendText("Thread interrupted\n");
}

}/ while
Hirun

/I OpenLogFiles method
private void OpenLogFiles() {
Date today = new Date();

Log = new File(logFile);
try {
os = new FileOutputStream(Log);

}
catch (IOException e) {

System.out.println("Could not open file os");

}
ps = new PrintStream(os);
}//OpenLogFile method

/I CloseLogFile method
public void CloseLogFile() {

51

output.appendText("Closing Log Files\n");
try {

os.close();
}
catch (JOException e){
output.appendText("IOException in method CloseLogFile.\n");

}
}//CloseLogFile

}//class

C. SNMPGET.JAVA

[/t steshe hesbe ke b e ke ke ke skeshe ke ke ke ke she e she ok ok ke sk e e ok s ke sk sk sk sk sk sk sk seskeske ok sk sk ok sk sk sk skeskok skeskosk ko sk sk sk sk sk ok skok sk ek skekok

* author: H. Carvey

* file: snmpGet.java :

* usage: snmpGet(SnmpAPI, String[], String, PrintStream)
* Prints variable bindings to PrintStream

* Environment: WindowsNTServer 3.51, Symantec Cafe 1.5
* Project files: MibCrusher.java, PollThread.java

*

* 26 Oct 96

**/
import java.io.*;

import java.util. ¥;

import Snmp.*;

public class snmpGet {
// constructor
public snmpGet(SnmpAPI api, SnmpSession session, String remArgs[], String

host,PrintStream outFile){

SnmpPDU pdu = new SnmpPDU(api);
pdu.command = api. GET_REQ_MSG;

int x = remArgs.length;
for (int i=0;i<x;i++) {
SnmpOID oid = new SnmpOID(remArgs|[i],api);

if (oid.toValue() == null) System.err.println("Invalid OID Arg: " + remArgs[i]);
else pdu.addNull(oid);

}

try {

52

pdu = session.syncSend(pdu);
}
catch (SnmpException e) {
System.err.println("Sending PDU: " + e.getMessage());

}

if (pdu == null) {
System.out.println("Request timed out to: " + session.peername);
System.exit(1);

}

if (pdu.errstat != 0)
System.out.println("Error Indication: " + SnmpException.exceptionString ((byte)
pdu.errstat) + "\nErrindex: " + pdu.errindex);

String varbinds = pdu.printVarBinds();
StringTokenizer t = new StringTokenizer(varbinds);
int tokens = t.countTokens();

String value[] = new String[tokens];

for (int i = 0;1 <= tokens-1;i++){
value[i] = t.nextToken();

}

outFile.println(value[4] + " " + value[9]);

} // constructor
I class file

33

D. MIBCRUSHER.HTML

<!--MibCrusher.html-->

<HTML>

<HEAD>

<TITLE>MIBCrusher</TITLE>

</HEAD>

<BODY>

<HR>

<APPLET CODE=MibCrusher.class WIDTH=700 HEIGHT=450>

</APPLET>

</BODY>
</HTML>

54

APPENDIX B: JAVA SIMULATION APPLET SOURCE CODE

A. SIMTEST.JAVA

[k sk sk ke ke ke sk sk e skeoke ke sk s ok ok ok ok sk skosk sk sk sk kst sk sk ok sk sk sk sk sk ks sk ok sk stk stokok skokokeske sk sk skl skok ok

* H. Carvey
* Simulation applet for thesis
* Written as an applet but will only run in the

* appletviewer; will not run in a browser due to security
%

* <1--SimTest.htm]-->

* <HTML>

* <HEAD>

* <TITLE>SimTest</TITLE>
* </HEAD>

* <BODY>

* <HR>

* <APPLET CODE=SimTest.class WIDTH=500 HEIGHT=250>
* </APPLET>

* </BODY>

* </HTML>

%

* Command: appletviewer SimTest.html
**/

Atk sk sk sk sk ok e e sk sk e e sk e ok ke ok ok okeok ok sk ok sk sk sk sk sk ko skeske sk sk sk skoskeskeoke sk sk skeske st skokokokok sk sk ok e skskokok

* SimTest.java

* GUI and exception handler for simulation
**/
import java.applet.*;

import java.awt.*;

import java.io.*;

import java.util.Date;

import java.util. Random,;

public class SimTest extends Applet {
Button Start, Stop, About, Close;
TextField file;
TextField messages;
SimThread s_thread;
public void init() {

Panel panell, panel2, buttonpanel;

55

GridBagLayout gridbag = new GridBagLayout();

Start = new Button("Start");
Stop = new Button("Stop");
About = new Button("About");
Close = new Button("Close");

file = new TextField(15);
file.setEditable(true);
file.setBackground(Color.white);
file.setText("sim1.dat");

messages = new TextField(15);
messages.setEditable(false);
messages.setBackground(Color.lightGray);

// panell

panell = new Panel();
panell.setBackground(Color.lightGray);
panell.setLayout(gridbag);

constrain(panell, new Label("LogFile:"),0,2,1,1);
constrain(panell, file,0,3,1,1);

// panel2

panel2 = new Panel();

panel2.setBackground(Color.lightGray);

panel2.setLayout(gridbag);

constrain(panel2, new Label("Messages: "),0,0,1,1);

constrain(panel2, messages, 0,1,1,3, GridBagConstraints. HORIZONTAL,
GridBagConstraints. NORTH, 1.0,0.0,0,0,0,10);

// buttonpanel

buttonpanel = new Panel();
buttonpanel.setBackground(Color lightGray);
buttonpanel.add(new Label("Simulation: "));
buttonpanel.add(Start);
buttonpanel.add(Stop);
buttonpanel.add(About);
buttonpanel.add(Close);

// Label

Label name = new Label("Video Source Simulation", Label. CENTER);
name.setFont(new Font("Helvetica", Font. BOLD + Font.ITALIC, 32));

// arrange panels in main applet panel

56

this.setLayout(new BorderLayout());
this.setBackground(Color.lightGray);
this.add("North",name);
this.add("West",panell);
this.add("East",panel2);
this.add("South",buttonpanel);

}/ init()

// main constrain methods for GridBagLayout
public void constrain(Container container, Component component,
int grid_x, int grid_y, int grid_width, int grid_height,
int fill, int anchor, double weight_x, double weight_y,
int top, int left, int bottom, int right)

GridBagConstraints ¢ = new GridBagConstraints();
c.gridx = grid_x; c.gridy = grid_y;
c.gridwidth = grid_width; c.gridheight = grid_height;
c.fill = fill; c.anchor = anchor;
c.weightx = weight_x; c.weighty = weight_y;
if (top+bottom-+left+right > 0)

c.insets = new Insets(top,left,bottom,right);

((GridBagLayout)container.getLayout()).setConstraints(component,c);
container.add(component);

}

public void constrain(Container container,Component component,
int grid_x, int grid_y, int grid_width, int grid_height)
{

constrain(container,component,grid_x,grid_y,grid_width,grid_height,

GridBagConstraints. NONE,GridBagConstraints. NORTHWEST,0.0,0.0,0,10,0,10);
}

public void constrain(Container container, Component component,
int grid_x, int grid_y, int grid_width, int grid_height,
int top, int left, int bottom, int right)
{
constrain(container,component,grid_x,grid_y,grid_width,grid_height,
GridBagConstraints.NONE,GridBagConstraints.NORTHWEST,0.0,0.0,top,
left,bottom,right);

}

// event handler method

57

public boolean handleEvent(Event evt) {

if (evt.id == Event. ACTION_EVENT && evt.target == Start) {
showStatus("Simulation started...");
s_thread = new SimThread(file.getText(), messages);
s_thread.openlLogFile();
s_thread.start();
return true;

}
else if (evt.id == Event. ACTION_EVENT && evt.target == Stop) {

s_thread.closeLogFile();
s_thread.stop();
showStatus("Simulation stopped.");
return true;
}
else if (evt.id == Event. ACTION_EVENT && evt.target == Close) {
System.exit(0);
return true;

}
else if (evt.id == Event. ACTION_EVENT && evt.target == About) {

showStatus("About");
messages.setText("SimTest");
return true;

}

return super.handleEvent(evt);
}// event handler

}/ class SimTest

/**

* SimThread.java file
* Handles the actual computations and transitions between
* states of the FSM

***/

class SimThread extends Thread {

private double A = 0.128416;

private double ALPHA = 0.78623;

private double BETA =3.1138;

private double FSM_UP[] = new double[21];
private double FSM_DOWN/] = new double[21];

58

private int STATE;
private long TIMESTAMP;
private long START;
Node newNode;
private int i;

String logfile;

File Log;
FileOutputStream os;
PrintStream ps;
TextField status;

int counter;

public SimThread(String filename, TextField ta) {

/*
* Initialize variables and get things ready for the
* simulation to run unabated
*/
logfile = filename;
newNode = new Node();
STATE =0;
setTransitionArrays();
START = System.currentTimeMillis();
status = ta;

}

public void run(){
counter = 1;
while(true) {

/*
* Once nextNode() is returned, then decide the new STATE
* of the FSM

*/
i = newNode.nextNode(FSM_UP[STATE] , FSM_DOWNI[STATE));
if (i==1) STATE++,
else if i ==-1) STATE--;
else STATE = STATE;
/*
* Need to limit the number of STATEs to the range of
*0-20 :
sk
sk

Conversion factor for A bits/pixel to bytes/slot transmitted

59

%
%k
*

*/

is STATE * 924.9
This gives the number of bytes transmitted per 100 msec time-
slot

TIMESTAMP = System.currentTimeMillis() - START;

if (STATE <=0) {
ps.printin(TIMESTAMP + "\t" + (STATE * 924.9));
STATE = 1;

}

if (STATE >= 20) {
ps.println(TIMESTAMP + "\t" + (STATE * 924.9));
STATE = 19;

}

ps.println(TIMESTAMP + "\t" + (STATE * 924.9));

try { :
Thread.sleep(100);

}
catch(InterruptedException €) {

}

counter++;
status.setText("Event: " + counter);

}
}

public void openLogFile() {

Log = new File(logfile);

try {
os = new FileOutputStream(Log);

}
catch (IOException €) {

System.out.println("Could not open file outputstream");

}

ps = new PrintStream(os);

}

public void closeLogFile() {

60

try {
os.close();

}
catch (IOException e) {

System.out.printIn("Could not close logfile");
}
}

private void setTransitionArrays() {
for (int i=0;i<21;i++) {
FSM_DOWN([il =i * BETA;

FSM_UP[i] = (20 - i) * ALPHA;
}

* Class to represent the Nodes of the FSM

class Node {

double X,Y;
Random r;

public Node() {

r = new Random();

}
public int nextNode(double UP, double DOWN) {

X = ((-1)/UP) * Math.log(r.nextDouble());

Y = ((-1)/DOWN) * Math.log(r.nextDouble());
if X<=Y)return 1;

else if (X > Y) return -1;

else return O;

61

B. SIMTEST2.JAVA

[sk sk sk ke sk ke ske ok she e sk sk sk sk sk sk sk sk skoskokoke ok ok ke sk sk sk sieskeokoeoke sk sk sk stk sk skokoskoskolokok skok skl ok skokokokok

* H. Carvey

* Video/Audio Simulation applet for thesis

* Written as an applet but will only run in the

* appletviewer; will not run in a browser due to security
*

* <!--SimTest2.html-->

* <HTML>

* <HEAD>

* <TITLE>SimTest2</TITLE>

* </HEAD>

* <BODY>

* <HR>

* <APPLET CODE=SimTest2.class WIDTH=500 HEIGHT=250>
* </APPLET>

* </BODY>

* </HTML>

*

* Command: appletviewer SimTest2.html
**/

/***

* SimTest2.java

* GUI and exception handler for video/audio simulation
**/

import java.applet.*;
import java.awt.*;
import java.io.*;

import java.util.Date;
import java.util.Random;

public class SimTest2 extends Applet {
Button Start, Stop, About, Close;
TextField file;
TextField messages;
SimThread?2 s_thread;
public void init() {

Panel panell, panel2, buttonpanel;

GridBagLayout gridbag = new GridBagLayout();

62

Start = new Button("Start");
Stop = new Button("Stop");
About = new Button("About");
Close = new Button("Close");

file = new TextField(15);
file.setEditable(true);
file.setBackground(Color.white);
file.setText("sim2.dat");

messages = new TextField(15);
messages.setEditable(false);
messages.setBackground(Color.lightGray);

// panell
panell = new Panel();
panell.setBackground(Color.lightGray);
panell.setLayout(gridbag);
constrain(panell, new Label("LogFile:"),0,2,1,1);
constrain(panell, file,0,3,1,1);

// panel2
panel2 = new Panel();
panel2.setBackground(Color.lightGray);
panel2.setLayout(gridbag);
constrain(panel2, new Label("Messages: "),0,0,1,1);
constrain(panel2, messages, 0,1,1,3, GridBagConstraints. HORIZONTAL,
GridBagConstraints. NORTH, 1.0,0.0,0,0,0,10);

// buttonpanel
buttonpanel = new Panel();
- buttonpanel.setBackground(Color.lightGray);
buttonpanel.add(new Label("Simulation: "));
buttonpanel.add(Start);
buttonpanel.add(Stop);
buttonpanel.add(About);
buttonpanel.add(Close);
/] Label
Label name = new Label("Video/Audio Source Simulation", Label. CENTER);
name.setFont(new Font("Helvetica", Font. BOLD + Font.ITALIC, 32));

// arrange panels in main applet panel

this.setLayout(new BorderLayout());
this.setBackground(Color.lightGray);

63

this.add("North",name);
this.add("West",panell);
this.add("East",panel2);
this.add("South" ,buttonpanel);

}/ init()

// main constrain methods for GridBagLayout
public void constrain(Container container, Component component,
int grid_x, int grid_y, int grid_width, int grid_height,
int fill, int anchor, double weight_x, double weight_y,
int top, int left, int bottom, int right)

GridBagConstraints ¢ = new GridBagConstraints();
c.gridx = grid_x; c.gridy = grid_y;
c.gridwidth = grid_width; c.gridheight = grid_height;
c.fill = fill; c.anchor = anchor;
c.weightx = weight_x; c.weighty = weight_y;
if (top+bottom-+left+right > 0)

c.insets = new Insets(top,left,bottom,right);

((GridBagLayout)container.getLayout()).setConstraints(component,c);
container.add(component);

}

public void constrain(Container container,Component component,
int grid_x, int grid_y, int grid_width, int grid_height)
{

constrain(container,component,grid_x,grid_y,grid_width,grid_height,

GridBagConstraints. NONE,GridBagConstraints. NORTHWEST,0.0,0.0,0,10,0,10);
}

public void constrain(Container container, Component component,
int grid_x, int grid_y, int grid_width, int grid_height,
int top, int left, int bottom, int right)
{
constrain(container,component,grid_x,grid_y,grid_width,grid_height,
GridBagConstraints. NONE,GridBagConstraints. NORTHWEST,0.0,0.0,top,
left,bottom,right);
}

/! event handler method
public boolean handleEvent(Event evt) {

if (evt.id == Event. ACTION_EVENT && evt.target == Start) {
showStatus("Simulation started...");
s_thread = new SimThread?2(file.getText(), messages);
s_thread.openLogFile();
s_thread.start();
return true;

}

else if (evt.id == Event. ACTION_EVENT && evt.target == Stop) {
s_thread.closeLogFile();
s_thread.stop();
showStatus("Simulation stopped.");
return true;

}

else if (evt.id == Event. ACTION_EVENT && evt.target == Close) {
System.exit(0);
return true;

}

else if (evt.id == Event. ACTION_EVENT && evt.target == About) {
showStatus(" About");
messages.setText("SimTest");
return true;

}

return super.handleEvent(evt);
}// event handler

I class SimTest

[Pk ok sk skoke ok ke skeskeshesfe e sfe ke sk sk 3 sk sk ok sk e ke ke ok sk ks sk sk st sk sk sk sk sk ke ke sk sk sk 3k sk sk sk e ke ok ok ok ok sk sk ok sk sk sk sk sk sk sk

* SimThread2.java

* Handles the actual computations and transitions between
* states of the FSM

***/

class SimThread2 extends Thread {

private double A = 0.128416;

private double ALPHA = 0.78623;

private double BETA = 3.1138;

private double FSM_UP[] = new double[21];
private double FSM_DOWN([] = new double[21];

private int STATE;

65

private long TIMESTAMP;
private long START;

Node newNode;

private int i;

String logfile;

File Log;

FileOutputStream os;
PrintStream ps;

TextField status;

int counter;

AudioSim a_thread;

public SimThread2(String filename, TextField ta) {
/* .
* Initialize variables and get things ready for the
* simulation to run unabated
*/
logfile = filename;
newNode = new Node();
STATE = 0;
setTransitionArrays();
START = System.currentTimeMillis();
status = ta;

}

public void run(){

a_thread = new AudioSim();
a_thread.start();

counter = 1;
whilé(true) {

/*
Once nextNode() is returned, then decide the new STATE
* of the FSM

£ S / .
i = newNode.nextNode(FSM_UP[STATE] , FSM_DOWNI[STATE]);
if 1==1) STATE++;
else if (i==-1) STATE--;
else STATE = STATE;
/*

* Need to limit the number of STATE:s to the range of

66

¥ K K K X ¥ X X

*
~

0-20

Conversion factor for A bits/pixel to bytes/slot transmitted

is STATE * 924.9

This gives the number of bytes transmitted per 100 msec time-
slot

Must add in the number of bytes produced by the audio component
TIMESTAMP = System.currentTimeMillis() - START;

if (STATE <=0) {
ps.printin(TIMESTAMP + "\t" + ((STATE * (double)924.9) +
(a_thread.getXmitBytes()/10)));
STATE=1;
}

if (STATE >= 20) {
ps.printin(TIMESTAMP + "\t" + ((STATE * (double)924.9) +
(a_thread.getXmitBytes()/10)));
STATE = 19;
}

ps.printin(TIMESTAMP + "\t" + ((STATE * (double)924.9) +
(a_thread.getXmitBytes()/10)));

try {
Thread.sleep(110);

}

catch(InterruptedException e) {

}

counter++;
status.setText("Event: " + counter);

}
}

public void openLogFile() {
Log = new File(logfile);
try {
os = new FileOutputStream(Log);
}

catch (IOException e) {

67

System.out.println("Could not open file outputstream");

}

ps = new PrintStream(os);

}

public void closeLogFile() {
/*
* Must halt the audio simulation thread, then close the logfile
%

*/
a_thread.stop();

try {
os.close();

}

catch (IOException €) {
System.out.println("Could not close logfile");

}
}

private void setTransitionArrays() {
for (int i=0;i<21;i++) {
FSM_DOWN[i] =i * BETA;
FSM_UP[i] = (20 - i) * ALPHA;
}

}

/* Class to represent the Nodes of the FSM
*/

class Node {

double X,Y;
Random r;

public Node() {

r = new Random();

}

public int nextNode(double UP, double DOWN) {

68

X = ((-1)/UP) * Math.log(r.nextDouble());
Y = ((-1)/DOWN) * Math.log(r.nextDouble());
if X <=Y)return 1;
else if (X >Y) return -1;
else return O;
}
}

/*
* AudioNode files for SimTest2

*

*/
class AudioNode {

double expValue;
Randomr;

public AudioNode() {
expValue = 0;
r = new Random();

}

public AudioNode(double value) {
expValue = value;
r = new Random();

)

public double time() {

double X = ((-1)/expValue) * Math.log(r.nextDouble());
return X;

}
}

69

/*

* Class to provide a separate thread for the audio
* simulation component

*/

class AudioSim extends Thread {

AudioNode onNode, offNode;
double xmitBytes, wait;

public AudioSim() {
onNode = new AudioNode(2.5);
offNode = new AudioNode(1.67);
xmitBytes = 0.0;

}

public void run() {

while(true) {
wait = offNode.time();

try |
Thread.sleep((long)wait);

}

catch(InterruptedException e) {
System.out.println("Thread sleep interrupted");

}

wait = onNode.time();

try {
Thread.sleep((long)wait);

}

catch(InterruptedException €) {
System.out.println("Thread sleep interrupted™);

}
xmitBytes += wait * 8.0;
}
}

public double getXmitBytes() {
double getBytes = xmitBytes;
xmitBytes = 0.0;
return getBytes;
}
}

70

APPENDIX C: MATLAB SOURCE CODE

A. TRAFFICM

O ¥k sk ok sk ok akok ok ok ok ok ok ok kR aokokok sk sk ok ok ok ok ok ok

% Harlan Carvey

%

% file for displaying data for thesis

% - produces graph of traffic in KBps per

% unit time
%***

clear all;
load v1114.dat;

[M N] = size(v1114);

timer = v1114(:;,1);
i_oct=v1114(:,2);

clear v1114;

fori=2:M;
time(i-1) = timer(i) - timer(i-1);
input(i-1) = i_oct(i) - i_oct(i-1);
h_time(i-1) = timer(i) - timer(1);
end;

i_kbps = (input .* 1000) ./ (time .* 1024);

% display KBps on y-axis, units of time on x-axis
% x-axis represents the total number of msec of the
% test

% use bar vice plot to represent the data

bar(h_time,i_kbps,'k-"),grid;

axis([0 max(h_time) O max(i_kbps)+0.5]);
title('Input Traffic");
xlabel(‘'msec");ylabel('KBps");

71

B. RS.M

Tlp 3k ek 3k sk 2 3k 3k 3ok sk sk sk e sk sk skeskeoke skl kool skokskosk ok skoskokokokokoskokokskokokokok

% Harlan Carvey
%
% file for computing RS statistic

% - produces R/S statistic plot
%***

clear all;
load v1114.dat;

[M N] =size(v1114);

timer = v1114(:,1);
i_oct =v1114(:,2);

clear v1114;

fori=2:M;
time(i-1) = timer(i) - timer(i-1);
input(i-1) = i_oct(i) - i_oct(i-1);
end;

i_kbps = (input .* 1000) ./ (time .* 1024);

1 =1_kbps(1:10000);
x1 =1;

x = [100 200 500 1000 2000 5000 10000];

w = 5000;

s = zeros([1,w]);

for k = 1:w:length(i);
s =s + i(k:kk+w-1);

end;

t = length(i)/w;

X2 =s./t;

w = 2000;

s = zeros([1,w]);

for k = 1:w:length(i);
s =s + i(k:k+w-1);

end;

t = length(i)/w;

72

X3 =s./t;

w = 1000;

s = zeros([1,w]);

for k = 1:w:length(i);
s = s + i(kik+w-1);

end,;

t = length(i)/w;

x4 =s./t;

w = 500;

s = zeros([1,w]);

for k = L:w:length(i);
s =s + i(k:k+w-1);

end;

t = length(i)/w;

X5 =s./t;

w = 200;

s = zeros([1,w]);

for k = 1:w:length(i);
s =s + i(k:k+w-1);

end;

t = length(i)/w;

x6 =s./t;

w = 100;

s = zeros([1,w]);

for k = 1:w:length(i);
s =s +i(k:k+w-1);

end;

t = length(i)/w;

X7 =s./t;

% R/S statistic section

1=x7;

m = mean(i);

s = sqrt(cov(i));
1 = length(i);

fork=1:1;
W(k) = sum(i(1:k)) - (k*m);
end;

RS(1) = (max(W) - min(W))/s;

73

i=X6;
m = mean(i);
s = sqrt(cov(i));
1 = length(i);
fork=1:1;
W(k) = sum(i(1:k)) - (k*m);
end;
RS(2) = (max(W) - min(W))/s;

1=Xx5;
m = mean(i);
s = sqrt(cov(i));
1 = length(i);
fork=1:1;
W(k) = sum(i(1:k)) - (k*m);
end;
RS(3) = (max(W) - min(W))/s;

i=x4;
m = mean(i);
s = sqrt(cov(i));
1 = length(i);
fork=1:1;
W(k) = sum(i(1:k)) - (k*m);
end;
RS(4) = (max(W) - min(W))/s;

1=Xx3;
m = mean(i);
s = sqrt(cov(i));
1 = length(i);
fork =1:1;
W) = sum(i(1:k)) - (k*m);
end;
RS(5) = (max(W) - min(W))/s;

1=Xx2;
m = mean(i);
s = sqrt(cov(i));
1 = length(i);
fork=1:1;
W(k) = sum(i(1:k)) - (k*m);
end;
RS(6) = (max(W) - min(W))/s;

74

1=x1;

m = mean(i);

s = sqrt(cov(i));
1 = length(i);

fork=1:1;
W(k) = sum(i(1:k)) - (k*m);
end;

RS(7) = (max(W) - min(W))/s;

loglog(x,RS,'’k',x,RS,'ko"),grid;
title('Plot of R/S statistic');
xlabel('log10(m)");ylabel('log10(R/S)");

C. VARM

q@**

% Harlan Carvey
%
% file for displaying data for thesis

% - produces variance-time curve for data
96**

clear all;
load valll4.dat;

[M N] = size(valll4);,

timer = val114(.,1);
1_oct = valll4(:,2);

clear valll4;

fori=2:M;
time(i-1) = timer(i) - timer(i-1);
input(i-1) = i_oct(i) - i_oct(i-1);
end;

i_kbps = (input .* 1000) ./ (time .* 1024);
% determine variance of original sequence and
% sequences produced using window sizes represented

% in vector x

i =i_kbps(1:10000);

75

ic(1) = cov(i);
x = [10 25 50 100 200 500 1000 2000 5000 10000];

w = x(9);

s = zeros([1,w]);

for k = 1:w:length(i);
s =s + i(kik+w-1);

end;

t = length(i)/w;

s = s./t;

ic(2) = cov(s);

w = x(8);

s = zeros([1,w]);

for k = 1:w:length(i);
s=s +i(k:k+w-1);

end;

t = length(1)/w;

S = s./t;

1c(3) = cov(s);

w = x(7);

s = zeros([1,w]);

for k = 1:w:length(i);
s = s + i(k:k+w-1);

end;

t = length(i)/w;

s =s./t;

ic(4) = cov(s);

w = x(6);

s = zeros([1,w]);

for k = 1:w:length(i);
s =s +i(kik+w-1);

end;

t = length(i)/w;

s = s./t;

ic(5) = cov(s);

w = x(5);

s = zeros([1,w]);

for k = 1:w:length(i);
s =s + i(kik+w-1);

end;

76

t = length(i)/w;
s =s./t;
ic(6) = cov(s);

w = x(4);

s = zeros([1,w]);

for k = 1:w:length(i);
s =s +i(kik+w-1);

end;

t = length(i)/w;

s =s./t;

ic(7) = cov(s);

w =x(3);

s = zeros([1,w]);

for k = 1:w:length(i);
s =s + i(kik+w-1);

end;

t = length(i)/w;

s = 8./t;

ic(8) = cov(s);

w = x(2);

s = zeros([1,w]);

for k = 1:w:length(i);
s =s +ikik+w-1);

end;

t = length(i)/w;

s = s./t;

1c(9) = cov(s);

w = x(1);

s = zeros([1,w]);

for k = 1:w:length(i);
s =s + i(k:k+w-1);

end;

t = length(i)/w;

s=s./t;

ic(10) = cov(s);

loglog(x,ic,'k',x,ic,’k+"),grid;
title("Variance (input) vs window size (m)');

2

xlabel('log10(m)");ylabel('log10(variance)');

77

D. IDCM.M

%**

% Harlan Carvey

%o

% file for displaying data for thesis

% - produces IDC curves for measured and

% simulated data (video/audio data)
%**
clear all;

load valll4.dat;

[M N] = size(valll4);
timer = vall14(:,1);
i_oct =val114(;,2);
clear valll4,

fori=2:M;
time(i-1) = timer(i) - timer(i-1);
input(i-1) = i_oct(i) - i_oct(i-1);
end;

i_kbps = (input .* 1000) ./ (time .* 1024);

% determine variance of original sequence and
% sequences produced using window sizes represented
% in vector X

i =i_kbps(1:10000);
idc(10) = cov(i)/mean(i);

x = [10 25 50 100 200 500 1000 2000 5000 10000};

w = x(9);
s = zeros([1,w]);
for k = 1:w:length(i);
s =s + i(k:k+w-1);
end;
t = length(i)/w;
s = s./t;
1dc(9) = cov(s)/mean(s);

w = x(8);

s = zeros([1,w]);
for k = 1:w:length(i);

78

|

s =s +i(kik+w-1);
end;
t = length(i)/w;
s =s./t;
1dc(8) = cov(s)/mean(s);

w =x(7);
s = zeros([1,w]);
for k = 1:w:length(i);
s =s + i(kik+w-1);
end;
t = length(i)/w;
s =s./t;
idc(7) = cov(s)/mean(s);

w = x(6);
s = zeros([1,w]);
for k = 1:w:length(i);
s =s + i(kik+w-1);
end;
t = length(i)/w;
s = s./t;
idc(6) = cov(s)/mean(s);

w = x(5);
s = zeros([1,w]);
for k = 1:w:length(i);
s = s +i(kik+w-1);
end;
t = length(i)/w;
s =s./t;
idc(5) = cov(s)/mean(s);

w = x(4);
s = zeros([1,w]);
for k = 1:w:length(i);
s =s + i(kik+w-1);
end;
t = length(i)/w;
s=s./t;
idc(4) = cov(s)/mean(s);

w =x(3);
s = zeros([1,w]);
for k = 1:w:length(i);

79

s =s + i(k:k+w-1);
end;
t = length(i)/w;
s = s./t;
idc(3) = cov(s)/mean(s);

w = x(2);
s = zeros([1,w]);
for k = 1:w:length(i);
s =s +i(kik+w-1);
end;
t = length(i)/w;
s =S8./t;
idc(2) = cov(s)/mean(s);

w = x(1);
s = zeros([1,w]);
for k = 1:w:length(i);
s = s + i(kck+w-1);
end;
t = length(i)/w;
S = s./t;
idc(1) = cov(s)/mean(s);
loglog(x,idc,'k");
title('TDC vs sequence length (L)");
xlabel('log10(L)");ylabel(log10(IDC)");
hold on;

clear all;
load sim2.dat;

time = sim2(1:10000,1);
input = sim2(1:10000,2);

clear sim2;

1= 1input’;
idc(10) = cov(i)/mean(i);

x = [10 25 50 100 200 500 1000 2000 5000 10000];
w = x(9);

s = zeros([1,w]);
for k = 1:w:length(i);

80

s = s + i(k:k+w-1);
end;
t = length(i)/w;
s=s./t;
idc(9) = cov(s)/mean(s);

w = x(8);
s = zeros([1,w]);
for k = 1:w:length(i);
s =s + i(k:k+w-1);
end;
t = length(i)/w;
s =s./t;
idc(8) = cov(s)/mean(s);

w = x(7);
s = zeros([1,w]);
for k = L:w:length(i);
s =s + i(k:k+w-1);
end;
t = length(i)/w;
s =s./t;
idc(7) = cov(s)/mean(s);

w = x(6);
s = zeros([1,w]);
for k = 1:w:length(i);
s =s +i(k:k+w-1);
end;
t = length(i)/w;
S = s./t;
idc(6) = cov(s)/mean(s);

w = x(5);
s = zeros([1,w]);
for k = 1:w:length(i);
s =s + i(kik+w-1);
end;
t = length(i)/w;
S = S./t;
idc(5) = cov(s)/mean(s);

w = x(4);
s = zeros([1,w]);
for k = 1:w:length(i);

81

s = s + i(kik+w-1);
end;
t = length(i)/w;
s = s./t;
idc(4) = cov(s)/mean(s);

w =x(3);
s = zeros([1,w]);
for k = 1:w:length(i);
s =s +i(k:k+w-1);
end;
t = length(i)/w;
s=s./t;
idc(3) = cov(s)/mean(s);

w = x(2);
s = zeros([1,w]);
for k = 1:w:length(i);
s =s +i(kik+w-1);
end;
t = length(i)/w;
s =s./t;
1dc(2) = cov(s)/mean(s);

w = x(1);
s = zeros([1,w]);
for k = 1:w:length(i);
s =s + i(kik+w-1);
end;
"~ t=length(i)/w;
s = 8./t;
idc(1) = cov(s)/mean(s);

loglog(x,idc,'’k:";
hold off;

legend('Measured','Simulated");

82

LIST OF REFERENCES

Cobbley, David A., “Multipoint LAN Conferencing,” Digest of Papers, COMPCON Spring
1993, IEEE Computer Society Press, 1993, pp. 502-506.

Cornell, G., and Horstmann, C., “Core Java”, SunSoft Press, Mountain View, CA, 1996.

Cinotti, M., Giordano, S., Romani, F., and Russo, F., “Implications of the Self-Similar Behaviour
of Real Traffic Sources on the Local Queue Occupancy in Metropolitan Area Networks”,
Proceedings of IEEE Singapore International Conference on Networks/International Conference
on Information Engineering 1995, 3-7 July 1995, pp. 431-435.

Dalgic, Ismail, Chien, William, and Tobagi, Foud A., “Evaluation of 10Base-T and 100Base-T -
Ethernets Carrying Video, Audio and Data Traffic,” Proceedings IEEE INFOCOM 1994, IEEE
Computer Society Press, 1994, pp. 1094-1102, vol. 3.

Flanagan, D., “Java in a Nutshell”, O’Reilly and Associates, Inc, Sebastopol, CA, 1996.

Fowler, Henry J., and Leland, Will E., “Local Area Network Traffic Characteristics, with
Implications Broadband Network Congestion Management”, IEEE Journal on Selected Areas of
Communications, no. 9, pp. 1139-1149, September 1991.

Harju, Jarmo, Kosonen, Ville-Pekka, and Li, Changhong, “Quality and Performance of a Desktop
Video Conferencing System in the Network of Interconnected LANS,” Proceedings of the 19th
Conference on Local Computer Networks, IEEE Computer Society Press, October 2-5 1994,
Minneapolis, MN, pp. 365-371.

Haykin, Simon S., “An Introduction To Analog and Digital Communications,” John Wiley &
Sons, Inc., US, 1989.

Leland, Will E., Taqqu, Murad S., Willinger, Walter, and Wilson, Daniel V., “On the Self-
Similar Nature of Ethernet Traffic (Extended Version),”IEEE /ACM Transactions on
Networking, vol. 2 no. 1, February 1994.

Leon-Garcia, A., “Probability and Random Processes for Electrical Engineers,” Addison-Wesley
Publishing Co., Reading, MA, 1994.

Likhanov, N., and Tsybakov, B., “Analysis of an ATM Buffer with Self-Similar (“Fractal”’) Input
Traffic”, Proceedings IEEE INFOCOM ¢95, pp. 985-992, vol. 3.

MathWorks, Inc., “MATLAB Reference Guide”, MathWorks, Inc., Natick, MA, 1992.

Perloff, Micheal, “Videoconferencing for Command and Control,” MILCOM 1993, IEEE,
October 11-14 1993, Boston, MA, pp. 476-479, vol. 2.

Schwartz, M., “Broadband Integrated Networks”, Prentice Hall, Upper Saddle River, NJ, 1996.

Stallings, William, “SNMP, SNMPv2 and RMON,” Addison-Wesley Publishing Co., Inc.,
Reading, MA, 1996.

Stevens, R., “TCP/IP Hlustrated, Volume 17, Addison-Wesley Publishing Co., Inc., Reading,
MA, 1994,

Subramanian, S. N., and Le-Ngoc, T., “Traffic Modeling in a Multi-media Environment”, 1995
Canadian Conference on Electrical and Computer Engineering, pp. 838-841, vol. 2.

Vetter, Ronald J., “Videoconferencing on the Internet,” Computer, vol. 28 no. 1, pp.77-79,
January, 1995.

84

INITIAL DISTRIBUTION LIST

. Defense Technical INfOrmation CENLETccceeeeeeeeeerereeeieerereseessreeeeeesessesssessessesssesssnns

. Prof. Hershel H. Loomis, Jr., Code EC/Lm

. Prof. Murali Tummala, Code EC/Tu

8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, VA 22060-6218

. Dudley Knox LIDIaryc.cccecrimeriiiiieertcceertetecsvetest e e ess s e easenens
Naval Postgraduate School

411 Dyer Rd.

Monterey, CA 93943-5101

. Director, Marine Corps Research CEentercccocoevevceeuericieneeeenenenssneeeeneenens
MCCDC, Code C40RC

2040 Broadway Street

Quantico, VA 22134-5107

. Director, Studies and Analysis DIVISIONc.cccccoeeeereeiieienreceeeeeercreeeceere e
MCCDC, Code C45

3300 Russell Road

Quantico, VA 22134-5130

. Director, Training and EQUCALIONcccccvueiiriiiniiiniiinieeteeie et
MCCDC, Code C46

1019 Elliot Road

Quantico, VA 22134-5027

. Chairman, CoAE B C ...ttt eeeeeereaeeesseseasesassssasesssasesssssnneesssns :
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5121

..

Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5121

...

Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5121

85

10.

1.

12.

Captain Randy Garciaccocccvveeeeeiieiinnceieeieiecricnitcnnc e ssneessessnessnnsens

Marine Corps Tactial Systems Support Activity (MCTSSA)
PO Box 555171
Camp Pendleton, CA 92055-5171

Captain LIOYd Biggs...c.ccceerieeieeniirienieneeterteeteeteste sttt et sse e sa e

Marine Corps Tactial Systems Support Activity (MCTSSA)
PO Box 555171
Camp Pendleton, CA 92055-5171

Captain David WELLSc..ccociiciiiciiiciicrini et

Marine Corps Tactial Systems Support Activity (MCTSSA)
PO Box 555171
Camp Pendleton, CA 92055-5171

Captain Harlan Carvey ..ottt s

213 Sicily Rd.
Seaside, CA 93955

86

